Application of CYBORG Beamline for Future Collider Studies

Gerard Lawler¹, James Rosenzweig¹ et al.
UCLA¹, Los Angeles, CA, USA
1. Background
2. General program overview
3. CYBORG Beamline overview
4. Future testing
5. Conclusions
1) Background

- Significant interest in photoinjector; wakefield; fundamental high field physics
- Broad interest in high gradient cavity development with focus on brightness
- Cryogenic breakdown reduction ⇒ higher accelerating gradients possible
- TopGun previous development in S-band
- More cryo manageable C-band + interest in broader applications ⇒ Cool Copper Collider relevance

\[B_{e,b} \approx \frac{2ec\varepsilon_0}{k_BT_e} \left(E_0 \sin \varphi_0 \right)^2 \]

Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources
JB Rosenzweig, et al. - Physical Review Accelerators and Beams, 2019
1) CYBORG Functions

- Simplest NC RF beamline integration using CrYogenic Brightness Optimized Radiofrequency Gun (CYBORG)

1. Ultra-high gradient photoinjector prototype
 1. Integrated infrastructure template
 2. Cathode load-lock development
 3. RF prototype, black plane etc.

2. Cryogenic emission testing:
 1. Dedicated high gradient RF test stand for cathodes incl. novel semiconductors
 2. Cryogenic dark current and breakdown
1) CYBORG Function 1

- Simplest NC RF beamline integration using CrYogenic Brightness Optimized Radiofrequency Gun (CYBORG)

1. **Ultra-high gradient photoinjector prototype**
 1. Integrated infrastructure template
 2. Cathode load-lock development
 3. RF prototype, black plane etc.

2. **Cryogenic emission testing:**
 1. Dedicated high gradient RF test stand for cathodes incl. novel semiconductors
 2. Cryogenic dark current and breakdown

1) CYBORG Function 2

- Simplest NC RF beamline integration using CrYogenic Brightness Optimized Radiofrequency Gun (CYBORG)

1. Ultra-high gradient photoinjector prototype
 1. Integrated infrastructure template
 2. Cathode load-lock development
 3. RF prototype, black plane etc.

2. Cryogenic emission testing:
 1. Dedicated high gradient RF test stand for cathodes incl. novel semiconductors
 2. Cryogenic dark current and breakdown

2) Program Overview

- CYBORG beamline not trivial task
- Robust program at Multi-Option Testing for High-field Radiofrequency Accelerators (MOTHRA) laboratory (right and below) to establish knowledge basis
- Suitable for cryogenics testing; C-band infrastructure development; low energy (single MeV) beamline for cathode studies

CYBORG Beamline

MOTHRA Laser Room

C-band Modulator

Thales C-band Klystron

Long-term Cryogenics Testbed
2) Cryostat v1

- Small test cryostat for initial cryocooler commissioning; material property studies; and LLRF tests
- C-band pillbox surface resistivity measurements as function of temperature, alloy (CuAg), surface finish etc.
- Helps inform CYBORG simulations (e.g. RF power deposition) which informs operational parameters

\[Q_0 = \frac{\Gamma}{R_s} \]
2) LLRF Measurements

- Copper pillbox cavities used for Cband low level LLRF

A. Cahill, PhD Thesis, 2017
2) Cryostat v2

- Much larger cryostat needed for CYBORG with waveguide, beam pipe etc.
- Many considerations to consider
- Size of chamber, multiple layer insulation needed for radiation shielding, nested UHV vacuum chamber far from easy pumping locations, cryocooler power limitations, etc.
3) Photogun specifications

- Reentrant cavity with high shunt impedance
- Cryogenic temperature provided RF stability and cathode studies
- 2.9 factor improvement of Q_0 from 300K to 77K
- Cancel quadrupole moment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch field</td>
<td>>120 MV/m</td>
</tr>
<tr>
<td>Operating temp</td>
<td>295K down to < 65K</td>
</tr>
<tr>
<td>Cavity frequency @</td>
<td>5.710 GHz</td>
</tr>
<tr>
<td>Beta</td>
<td>4 @ 77K</td>
</tr>
<tr>
<td>Q_{ext}</td>
<td>6056</td>
</tr>
<tr>
<td>Q_0</td>
<td>24750</td>
</tr>
</tbody>
</table>

E field magnitude

doi:10.18429/JACoW-IPAC2022-THPOST046
3) Thermal Balancing

- Primary initial and ongoing testing of CYBORG examining thermal balancing
- Full power RF power into gun requires additional radiation shielding underway now
- Accounting of major heat leaks below with simulation of temperature gradients

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Materials</th>
<th>Equivalent Area</th>
<th>Equivalent Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>6" plug flange</td>
<td>Stainless steel (CF flange), edge welded bellows</td>
<td>436 mm²</td>
<td>< 1 W</td>
</tr>
<tr>
<td>002</td>
<td>2.75" downstream flange</td>
<td>Stainless steel (CF flange), edge welded bellows</td>
<td>85 mm²</td>
<td>< 1 W</td>
</tr>
<tr>
<td>003</td>
<td>Waveguide</td>
<td>Stainless steel</td>
<td>588 mm²</td>
<td>Approx. 10 W</td>
</tr>
<tr>
<td>004</td>
<td>Supports</td>
<td>Stainless steel, aluminum, G10</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>005</td>
<td>Diagnostic probes</td>
<td>Copper wiring of various gauges</td>
<td>50 mm²</td>
<td>5 W</td>
</tr>
<tr>
<td>006</td>
<td>Alignment rails</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>007</td>
<td>Radiation</td>
<td>N/A</td>
<td>25000 mm²</td>
<td>< 1 W</td>
</tr>
<tr>
<td>008</td>
<td>Pumping on dummy side</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3) Phase1 Cathode

- Phase1 of CYBORG Cu cathode tests
- Cathode backplane press fit to begin
- Functional at Elettra lab in Trieste, Italy for FERMI seeded FEL
 - Uses high gradient BNL/SLAC/UCLA 1.6 cell electron gun
- Slow exchange not intended for final cathode testing but allows versatility with respect to cathode load lock integration
3) Phase1 Cathode

- Phase1 of CYBORG Cu cathode tests
- Cathode backplane press fit to begin
- Functional at Elettra lab in Trieste, Italy for FERMI seeded FEL
 - Uses high gradient BNL/SLAC/UCLA 1.6 cell electron gun
- Slow exchange not intended for final cathode testing but allows versatility with respect to cathode load lock integration
3) Phase1 Cathode

- Phase1 of CYBORG Cu cathode tests
- Cathode backplane press fit to begin
- Functional at Elettra lab in Trieste, Italy for FERMI seeded FEL
 - Uses high gradient BNL/SLAC/UCLA 1.6 cell electron gun
- Slow exchange not intended for final cathode testing but allows versatility with respect to cathode load lock integration
3) High power structure

- Create test bed for hosting multiple different experiments into various structures and material alloys
 - Brazeless joint testing, copper-silver and more exotic alloys perhaps w/ Mo etc.
- Logic of cryogenics, assembly, and general diagnostics for actual experiments
- Example here using 2 cell distributed-coupling in Cband (to right)
- Full cell cavity geometry chosen for future UCXFEL photoinjector

* e-field (f=5.712 GHz) [1] *

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>5.712 GHz</td>
</tr>
<tr>
<td>Phase</td>
<td>50 °</td>
</tr>
<tr>
<td>Cross section</td>
<td>A</td>
</tr>
<tr>
<td>Cutplane at X</td>
<td>0.002 mm</td>
</tr>
<tr>
<td>Maximum (Plane)</td>
<td>13414.7 V/m</td>
</tr>
<tr>
<td>Maximum</td>
<td>13414.7 V/m</td>
</tr>
</tbody>
</table>

doi:10.1103/PhysRevAccelBeams.24.063401
3) Cband RF Power

- Resurrected Thales C-band klystron to single MW power sufficient for 1st cryogenic beamline (right)
- In-house built modulator for C-band under completed and functioning nominally
- C-band SLED development in collaboration with Tantawi group at SLAC
3) Phase 1

- Config2 goals:
 - Cryogenic copper photoemission
 - Cryogenic QE
 - Preliminary lower prevision MTE measurement
4) Phase 2

- Load lock and phase 2 diagnostics (schematic below)
- High precision MTE measurement setup needed
- Cathode coupling work in parallel underway using interference fit idea (right) with analog Mo and Cu structures
 - RF spring and knife edge seals difficult for cryo
- Slight INFN minipuck mod needed
• Significant infrastructure and space for 18m of parallel beamline
• Operational with S-band hybrid photoinjector
• Suitable for high energy high gradient linac development (10s-100s MeV); UCXFEL demonstrators; C-band high gradient photoinjector research
4) MITHRA Lab

- Significant infrastructure and space for 18m of parallel beamline
- Operational with S-band hybrid photoinjector
- Suitable for high energy high gradient linac development (10s-100s MeV); UCXFEL demonstrators; C-band high gradient photoinjector research
5) Conclusions

1. CYBORG next step in long line of bright photogun work at UCLA
2. MOTHRA lab developed as robust testing ground for building pragmatic knowledge base necessary for normal conducting cryogenic C-band cavity-based beamline commissioning
3. Lessons learned and future research trajectory synergistic with C^3 on many fronts
Collaborators

- Obed Camacho, Jacob Cunningham, Atsushi Fukasawa, Richard Li, Nathan Montanez, Brian Naranjo, Jake Parsons, April Smith, Sean O’Tool, Arathi Suraj, Zhaoyan Sun, Yusuke Sakai, Oliver Williams

- Paul Carriere, Nanda Matavalam

- Evgenya Simakov, Anna Alexander, Petr Anisimov, Haoran Xu

- Fabio Bosco, Martina Carillo

- Zenghai Li, Sami Tantawi, Nathan Majernik

- Andrea Mostacci, Bruno Spataro