Right Handed neutrino pair production at ILC

Work in progress

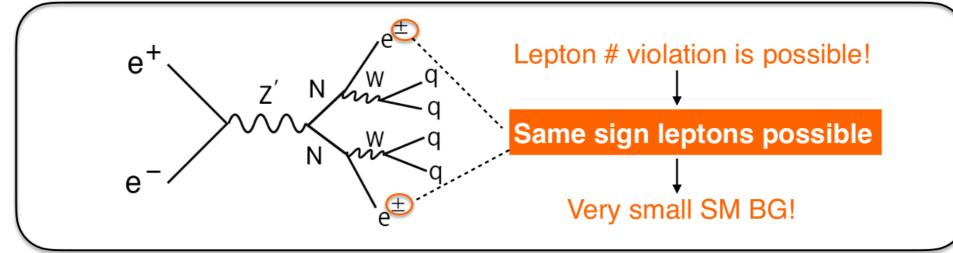
Jurina Nakajima, <u>Daniel Jeans</u> A, Arindam Das B, Keisuke Fujii A, Nobuchika Okada C, Satomi Okada C, Ryo Yonamine A

SOKENDAI, KEKA, Hokkaido Univ.B, Alabama Univ.C

Motivation and introduction

The Right Handed Neutrino (RHN) can address the following big questions

- Why does matter dominate anti-matter in our universe?
- Do quarks and leptons unify?
- Why is neutrino mass so small?



arXiV[1812.11931]

RHN pair production

- \square a Majorana particle ($N = \overline{N}$)
- \square minimal U(1)_{B-L} model

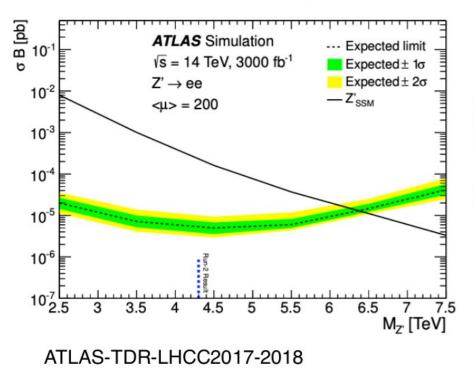
$$G_{B-L} \equiv SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$$
 gauge boson : Z'

Benchmark points with $M_N = 100, 150, 200, 225 \text{ GeV}$

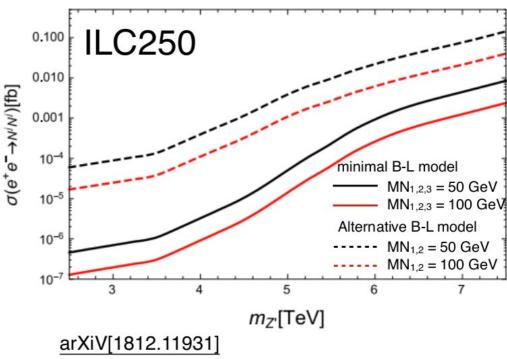
Benchmark points

• Pol(e-, e+) = (-0.8, +0.3), (+0.8, -0.3):
$$\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$$

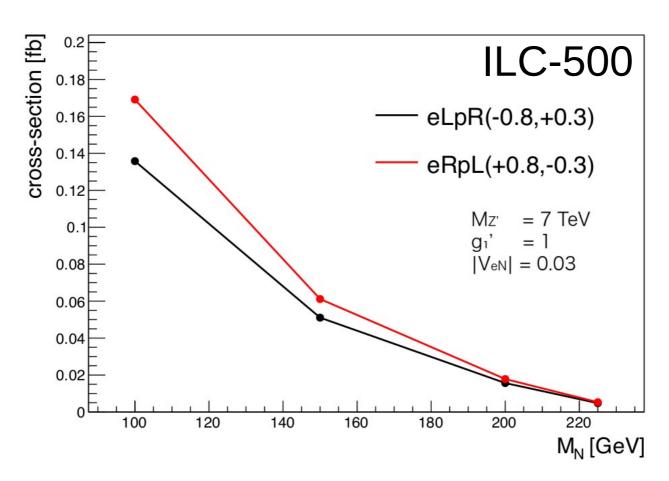
• Pol(e-, e+) = (-0.8, -0.3), (+0.8, +0.3):
$$\mathcal{L} = 400 \, [\mathrm{fb}^{-1}]$$


M _N [GeV]	Mz [,] [TeV] Z' mass	g₁' U(1) _{B-L} coupling	V _{eN} ² mixing angle	$\sigma_0(e_L^-e_R^+ o NN)$ 100% polarization [fb]	BR (<i>N</i> → <i>e</i> + <i>W</i> -)	Event # at ILC500 [4000fb ⁻¹]
100	7	1	0.0009	0.55	0.44	1446
150	7	1	0.0009	0.36	0.33	925
200	7	1	0.0009	0.14	0.30	349
225	7	1	0.0009	0.046	0.29	112

- ▶ minimal U(1)_{B-L} model
- ▶ ILC 500 with initial state radiation (ISR) and beamstrahlung (BS)


jurina@post.kek.jp = 3

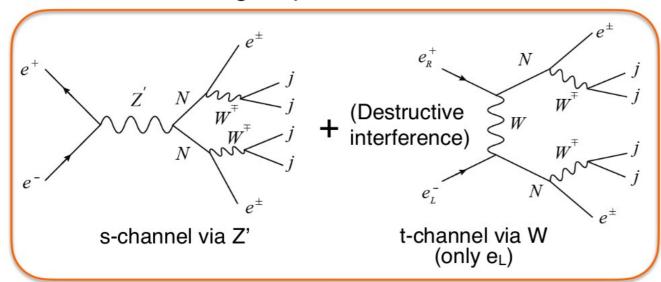
Current limits - Z' mass



RHN pair production crosssection at ILC250 for expected HL-LHC limits on Mz/g'

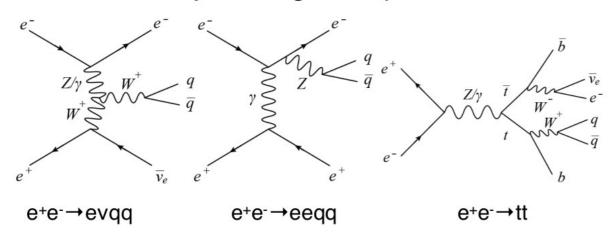
The heavier Z' mass less constrained by LHC

Same sign cross-section vs M_N



cross – section =
$$\sigma(ee \to NN \to e^{\pm}e^{\pm}W^{\mp}W^{\mp})$$

= $\sigma_0(ee \to NN) \times 2(BR(N \to e^{-}W^{+})^2)$


Analysis tool and backgrounds

ILC500

Signal process:

6f and 4f major background processes:

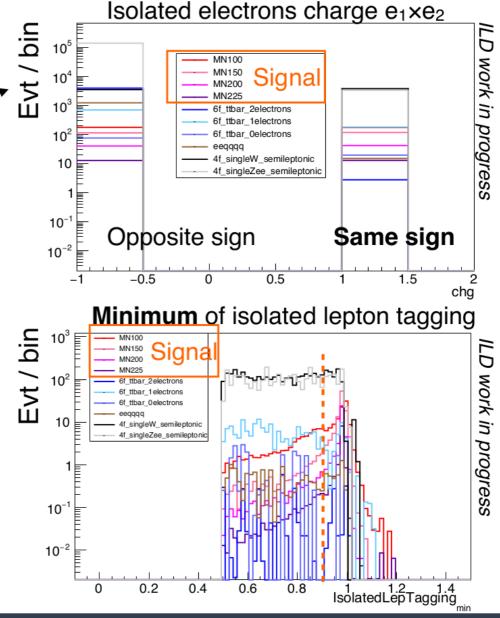
UFO model files

Make Events

ILD Full Simulation

& (Geant4)

Reconstruction



miniDST

Events format

Cut conditions to select signal events

- 2 isolated electron && 0 isolated γ, μ
- Same sign isolated electrons
- ▶ Isolated electron energies E_{iso} < 200 [GeV]</p>
- ▶ IsolatedLepTagging(min) > 0.9 —
- Jet clustering with Durham log₁₀(y12) > −1
- P_{miss} < 100 [GeV] &&(P_{miss} < 40 [GeV] II Icosθ_{Pmiss}I > 0.95)

Cut flow (eLpR) · ILC 500 with ISR / BS · Pol(e-, e+) = (-0.8, +0.3) $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$

LCWS 2023

- · ILC 500 with ISR / BS

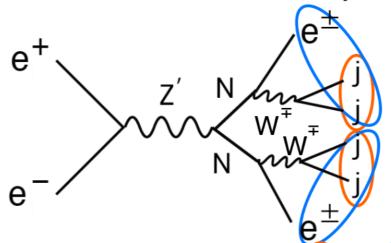
ILD work in progress

jurina@post.kek.jp

8

	Signal Events (ee→NN)			Background Events						
	M _N =100	M _N =150	M _N =200	M _N =225	eeqqqq	4f_singleW _semileptonic	4f_singleZee_ semileptonic	6f_ttbar 2electrons	6f_ttbar 1electron	6f_ttbar 0electron
No cut	554	394	143	45	11898	2825010	699475	16425	129283	11028
e _{iso} #=2 && γ _{iso} #=0 &&	347	343	79	40	4721	90818	162774	9422	2271	201
Same sign $(e_{iso1} \times e_{iso2} = 1)$	176	115	39	12	39	46138	3800	8	439	25
E _{iso} < 200 [GeV]	175	114	39	12	39	41319	3557	8	439	25
$-0.95 < \cos\theta_{isoe} < 0.95$	156	103	36	11	13	17506	623	4	266	15
IsolatedLepTa gging _{min} > 0.9	94	91	31	10	2	2632	128	1	50	0
$\log_{10}(y12) > -1$	94	90	31	9	2	2632	128	1	50	0
$\begin{aligned} P_{\text{miss}} &< 100 \text{ \&\&} \\ (P_{\text{miss}} &< 40 \text{ II} \\ \text{Icos}\theta_{\text{Pmiss}} \text{I} > \\ 0.95) \end{aligned}$	84	84	28	9	1	79	30	0	9	0

Cut flow (eLpR) · ILC 500 with ISR / BS · Pol(e-, e+) = (-0.8, +0.3) $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$


· ILC 500 with ISR / BS

ILD work in progress

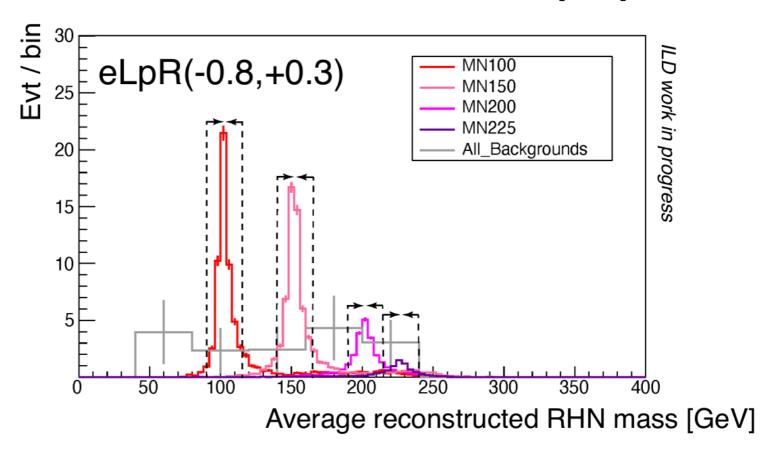
									•	U
	Signal Events (ee→NN)				Background Events					
	M _N =100	M _N =150	M _N =200	M _N =225	eeqqqq	4f_singleW _semileptonic	4f_singleZee_ semileptonic	6f_ttbar 2electrons	6f_ttbar 1electron	6f_ttbar 0electron
No cut	554	394	143	45	11898	2825010	699475	16425	129283	11028
e _{iso} #=2 && γ _{iso} #=0 &&	347	343	79	40	4721	90818	162774	9422	2271	201
Same sign (e _{iso1} ×e _{iso2} = 1)	0:									25
E _{iso} < 200 [GeV]	Signal efficiency \sim 20% Remaining backgrounds events \sim 120 eLpR), 20 (eRpL)									25
-0.95<										4.5
$cos\theta_{isoe}\!<0.95$	100	100	50	11	10	17000	020	7	∠ 66	15
IsolatedLepTa gging _{min} > 0.9	94	91	31	10	2	2632	128	1	50	0
$\log_{10}(y12) > -1$	94	90	31	9	2	2632	128	1	50	0
P_{miss} < 100 && (P_{miss} < 40 II $lcos\theta_{Pmiss}$ I > 0.95)	84	84	28	9	1	79	30	0	9	0
LCWS 2023	jurina@post.kek.jp								9	

Reconstruction methods

After removing isolated electrons force into 4 jets (Durham)

Search for the correct combination of jj and jje

Jet pair 1
$$\rightarrow M_{jj1}$$
, Jet pair 2 $\rightarrow M_{jj2}$
$$F_1 = (M_{jj1} - M_w)^2 + (M_{jj2} - M_w)^2$$


Best jet pair 1 + iso
$$e \rightarrow M_{jje1}$$

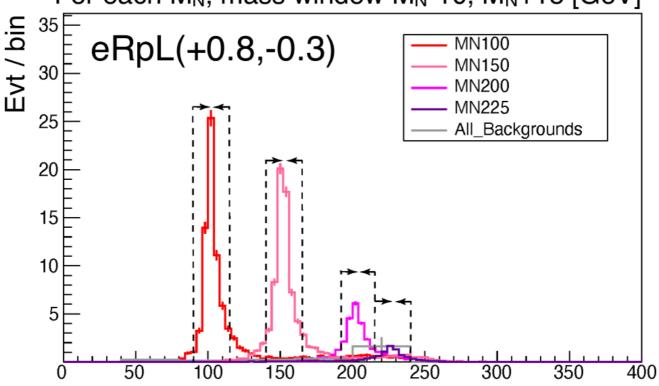
Best jet pair 2 + iso $e \rightarrow M_{jje2}$
We expect for " $M_{jje1} = M_{jje2}$ "
 $F_2 = (M_{jje1} - M_{jje2})^2$

Choose combination with minimum F₁,F₂

Signal mass cut

- ILC 500 with ISR / BS
- Pol(e⁻, e⁺) = (-0.8, +0.3) $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$

For each M_N , mass window M_N -10, M_N +15 [GeV]



Assume background distribution is flat **20 (eLpR) background events remain in mass window**

Signal mass cut

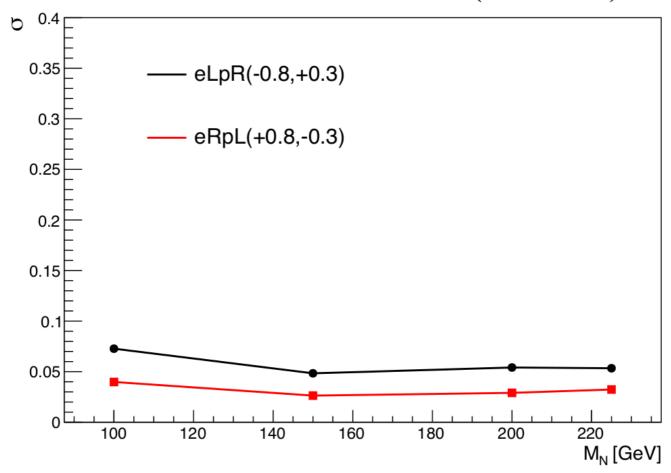
- ILC 500 with ISR / BS
- Pol(e-, e+) = (+0.8, -0.3) $\mathcal{L} = 1600 \, [\mathrm{fb}^{-1}]$

Average reconstructed RHN mass [GeV]

Assume background distribution is flat

20 (eLpR) and 3 (eRpL) background events remain in mass window

Less backgrounds thanks to beam polarization Reduce W contribution

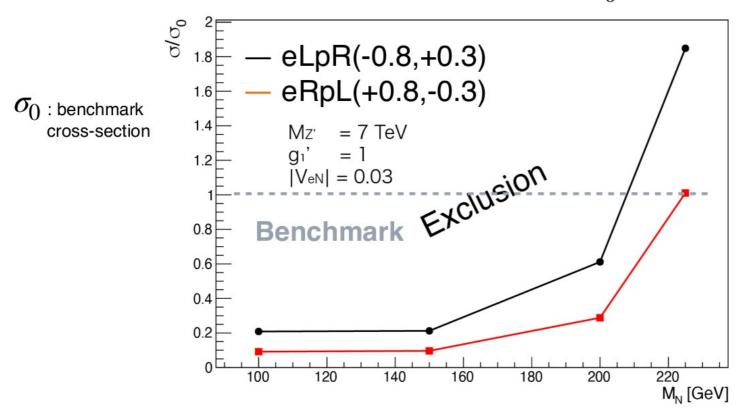

Results

	M _N [GeV]	# of Signal After mass cut	# of BG After cut	σ ₀ [fb] Initial benchmark (ee→NN)	σ ⁹⁵ [fb] 95% exclusion limit (ee→NN)	$\frac{\sigma^{95}}{\sigma_0}$
	100	53.64		0.35	0.073	0.21
LR	150	52.73		0.22	0.048	0.21
80,30	200	18.30	20.12	0.088	0.054	0.61
	225	5.51		0.029	0.053	1.8
RL 80,30	100	66.75		0.43	0.040	0.092
	150	63.41	3.24	0.27	0.026	0.097
	200	21.23	3.24	0.10	0.029	0.29
	225	6.08		0.032	0.032	1

13

Exclusion plot on cross-section $\sigma(ee \rightarrow NN)$

$$\sigma=\sigma_0\times\left\{\frac{2}{N_S}\left(1+\sqrt{1+N_B}\right)\right\}$$
 Calculate 95% UL on $\sigma(ee\to NN)$



LCWS 2023 jurina@post.kek.jp] 4

Exclusion plot on σ/σ_0

Normalised to benchmark cross-section

Calculate 95% UL on σ/σ_0

Exclude benchmark points and cross-sections up to 10x smaller

Summary

Conclusion:

Can use same sign lepton signature to set powerful limits on RHN at ILC!

or, if we are lucky, good prospects to discover them

Current activity & future plan:

- ☐ ILC250 case (on going)
- → Try to improve signal efficiency
- Same sign muons
- → Expect smaller backgrounds
- + check all other SM processes for possible background contributions