

UC SANTA BARBARA

Office of Science

CMS Higgs boson measurements: Highlights and prospects

Ulaşcan Sarıca Univ. of California, Santa Barbara

> SLAC LCWS '23 May 16, 2023

Progress over a decade in measuring...

... of the Higgs boson

Common ways to produce a SM Higgs in *pp* collisions

10000000000

Time

t

[Weak] Vector hic boson fusion (VBF) Higgs (7%)

SM Higgs decays

What do we know about Higgs properties @ CMS today?

Mass & spin

Measure from resonance line shape: \rightarrow 1-2% resolution in 4 ℓ and $\gamma\gamma$ decays

 $4\ell + \gamma\gamma$ Run 1 + Run 2 2016 data [link]: $m_H = 125.38 \pm 0.14$ GeV Extensive list of tests of spin-1 and -2 hypotheses using ZZ, WW and $\gamma\gamma$ decays [link]

 \rightarrow Exploit angular correlations

The Higgs boson is consistent with spin 0.

- \rightarrow Looser constraints on different spin-0 hypotheses
- → Spin-1 excluded at >99.999% CL
- → Spin-2 excluded at >99% CL (99.87% for min. graviton)

Anomalous spin-0 couplings: HVV

$$A(HVV) \sim \left[a_{1} - e^{i\phi_{\Lambda_{1}}} \frac{(q_{V1}^{2} + q_{V2}^{2})}{\Lambda_{1}^{2}} - e^{i\phi_{\Lambda_{1}}^{Z\gamma}} \frac{q_{\gamma}^{2}}{(\Lambda_{1}^{Z\gamma})^{2}} \dots \right] m_{V}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*}$$
$$+ |a_{2}| e^{i\phi_{a2}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + |a_{3}| e^{i\phi_{a3}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

HVV amplitude \propto SM-like a_1 term + other BSM CP-even or -odd contributions

 $H \rightarrow ZZ + H \rightarrow \tau\tau$ measurements using Run 2 data [link]

Results in terms of fractional xsec

 $f_{ai} = |a_i|^2 \sigma_i / (|a_1|^2 \sigma_1 + |a_i|^2 \sigma_i)$ with $\phi_{ai} = 0$ or π .

 \rightarrow Make use of HVV vertices in both Higgs decay and production

→ HZZ channel results [<u>link</u>] alone also provide constraints with other BSM couplings profiled

Anomalous spin-0 couplings: Hgg/Htt

Link

8

 $A(Hgg) \sim a_2^{gg} \mathbf{f}_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{gg} \mathbf{f}_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$

Can apply EFT treatment in $gg \rightarrow H$ when $m_H < 2m_t$

 \rightarrow Can be translated to *Htt* couplings

$$A(Htt) = -\frac{m_t}{v} \bar{\psi}_t (\kappa_t + i \tilde{\kappa}_t \gamma_5) \psi_t$$

With discovery of $t\bar{t}H$ associated production [link], one can probe Httcouplings directly

Anomalous spin-0 couplings: Hgg/Htt

 $A(Hgg) \sim a_2^{gg} \mathbf{f}_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{gg} \mathbf{f}_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$

Can apply EFT treatment in $gg \rightarrow H$ when $m_H < 2m_t$

 \rightarrow Can be translated to *Htt* couplings

9

Higgs couplings to other particles

Measurements performed using a combination of multiple Higgs decays

Constraints on production and visible decays

- \rightarrow Measurements so far consistent with the SM
- ightarrow Gluon fusion within ~5%, VBF within ~10%
- \rightarrow Consistent excess in tH, but large uncertainty due to small xsec and $t\bar{t}H$ contamination
- \rightarrow Precision in ZZ, WW, $\gamma\gamma$, and $\tau\tau$ decays ~10%

$H \rightarrow$ invisible limits

Most stringent CMS limit from Run 2 VBF analysis: $\mathcal{B}_{inv} < 0.18 @ 95\%$ CL

Combination with other analyses: $B_{inv} < 0.15 @ 95\%$ CL

$H \rightarrow \text{invisible limits}$

Beyond couplings: Fiducial differential xsecs

Beyond couplings: Fiducial differential xsecs

Higgs boson width/lifetime

SM $\Gamma_H = 0.0041$ GeV, $c\tau_H = 4.8 \times 10^{-8} \mu m$ \rightarrow Mass resolution: ~ 1 GeV $\rightarrow 4\ell$ vertex resolution: $\sim 50 \mu m$

 Γ_{H} and τ_{H} too small to be measured directly

In $H \rightarrow VV$ (V = Z, W), $m_V < m_H < 2m_V$: \rightarrow Either H is on-shell and one V is off-shell, or H is off-shell and both Vs are on-shell

→ Both Vs going on-shell allows ~10% of events in the SM to produce an off-shell Higgs boson [<u>link</u>]

Possible to measure two off-shell production mechanisms:

- $\mu_F^{\text{off-shell}}(gg)$ - $\mu_V^{\text{off-shell}}$ (EW H + 2 jets)

- Can also measure overall $\mu^{\text{off-shell}}$

In $H \rightarrow VV$ (V = Z, W), $m_V < m_H < 2m_V$: \rightarrow Either H is on-shell and one V is off-shell, or H is off-shell and both Vs are on-shell

→ Both Vs going on-shell allows ~10% of events in the SM to produce an off-shell Higgs boson [<u>link</u>]

Possible to measure two off-shell production mechanisms:

- $\mu_F^{\text{off-shell}}(gg)$ - $\mu_V^{\text{off-shell}}$ (EW H + 2 jets)
- Can also measure overall $\mu^{\text{off-shell}}$

Challenging measurement in multiple ways:

 \rightarrow Sizeable, negative interference with continuum ZZ background

- ightarrow ~Twice the size of the Higgs signal
- ightarrow Necessary in the SM to ensure unitarity

In $H \rightarrow VV$ (V = Z, W), $m_V < m_H < 2m_V$: \rightarrow Either H is on-shell and one V is off-shell, or H is off-shell and both Vs are on-shell

→ Both Vs going on-shell allows ~10% of events in the SM to produce an off-shell Higgs boson [<u>link</u>]

Possible to measure two off-shell production mechanisms:

- $\mu_F^{\text{off-shell}}$ (gg) - $\mu_V^{\text{off-shell}}$ (EW H + 2 jets)

- Can also measure overall $\mu^{\text{off-shell}}$

Challenging measurement in multiple ways:

 \rightarrow Large perturbative corrections in gluon fusion

 \rightarrow Requires consistent simulation and corrections

In $H \rightarrow VV$ (V = Z, W), $m_V < m_H < 2m_V$: \rightarrow Either H is on-shell and one V is off-shell, or H is off-shell and both Vs are on-shell

→ Both Vs going on-shell allows ~10% of events in the SM to produce an off-shell Higgs boson [<u>link</u>]

Possible to measure two off-shell production mechanisms:

- $\mu_F^{\text{off-shell}}(gg)$ - $\mu_V^{\text{off-shell}}$ (EW H + 2 jets)
- Can also measure overall $\mu^{\text{off-shell}}$

- → Simulated event generation computationally very intensive
- → Challenging integration of perturbative corrections

Higgs boson width from off-shell

Combine with on-shell signal strength measurement to extract $\Gamma_{\rm H}$ [link]:

Measure on-shell signal strength from final states ZZ or WW

Ratio of off-shell to on-shell signal strengths for each production mode gives $\Gamma_{\!H}$

Higgs boson width from off-shell

Higgs boson width from off-shell

SM Higgs potential:

$$V(\phi) = 1/2 \,\mu^2 \phi^{\dagger} \phi + 1/4 \,\lambda \left(\phi^{\dagger} \phi\right)^2$$

 \rightarrow After gauge rotations and using the vacuum expectation v:

$$V(H) = V_0 + \lambda v^2 H^2 + \lambda v H^3 + 1/4H^4$$

→ Allows triple and quartic Higgs couplings
 → Di-Higgs final state @ LHC

Left diagram sensitive to the triple-Higgs coupling through λ \rightarrow Both sensitive to different powers of Htt & Hbb couplings \rightarrow Different ways new physics could change this interaction

Di-Higgs measurements done using events with a larger multiplicity of particles and/or jets

Different final states either dirtier but with larger Higgs decay probability (e.g., $HH \rightarrow 4b$), or cleaner in bkgs. with smaller decay rates ($HH \rightarrow b\bar{b}\gamma\gamma$).

Uncertainties statistically dominated, but some channels will only barely reach an observation threshold by the end of HL-LHC.

WW yy

bb WW

bb γγ 🐥

bb ττ 🐥

bb bb 🐣

Di-Higgs measurements done using events with a larger multiplicity of particles and/or jets

Different final states either dirtier but with larger Higgs decay probability (e.g., $HH \rightarrow 4b$), or cleaner in bkgs. with smaller decay rates ($HH \rightarrow bb\gamma\gamma$).

Uncertainties statistically dominated, but some channels will only barely reach an observation threshold by the end of HI-IHC.

> Interaction rate is tiny, so we can only place limits.

 \rightarrow Take $HH \rightarrow 4b$: -Max. ~ 1450 events / $10^{16} pp$ interactions \rightarrow Rates enhances in BSM cases

CMS Preliminary 138 fb⁻¹ (13 TeV) Di-Higgs measurements done using $\kappa_{\lambda} = \kappa_{t} = 1$ Observed Median expected events with a larger multiplicity of $\kappa_{1/2} = \kappa_{2/2} = 1$ 68% expected particles and/or jets 95% expected WW γγ Different final states either dirtier but CMS-PAS-HIG-21-014 Expected: 52 Observed: 97 with larger Higgs decay probability bb WW (e.g., $HH \rightarrow 4b$), or cleaner in bkgs. Expected: 18 CMS-PAS-HIG-21-005 Observed: 14 with smaller decay rates ($HH \rightarrow bb\gamma\gamma$). bb ZZ 🐥 Acc. by JHEP (2206.10657) Expected: 40 Observed: 32 Uncertainties statistically dominated, Multilepton + but some channels will only barely Acc. by JHEP (2206.10268) Expected: 19 reach an observation threshold by the Observed: 21 end of HL-LHC. bb yy 🐥 JHEP 03 (2021) 257 Expected: 5.5 Observed: 8.4 bb ττ 🐥 Interaction rate is tiny, so we can Acc. by PLB (2206.09401) Expected: 5.2 Observed: 3.3 only place limits. bb bb 🐣 \rightarrow Take $HH \rightarrow 4b$: Nature 607 (2022) 60 Expected: 4.2 Observed: 7.2 Max. ~ 1450 events / $10^{16} pp$ interactions Comb. of A Expected: 2.5 Nature 607 (2022) 60 Observed: 3.4 \rightarrow Rates enhances in BSM cases 10 100 1000 27 95% CL limit on $\sigma(pp \rightarrow HH)/\sigma_{2}$

Theory

Higgs self-couplings: Di-Higgs in VHH

Higgs self-couplings: Di-Higgs in VHH

Results obtained by keeping the parameters not shown fixed to SM

- \rightarrow Complementary to HH final state results
- \rightarrow Independent of κ_t and modelling of loops

CMS prospects @ HL-LHC

Anomalous spin-0 HVV & Hgg couplings

Projections obtained from $\tau\tau$ channel alone \rightarrow Could expect even further improvements after combination with other decay modes

Anomalous spin-0 HVV & Hgg couplings

 $\Delta \ln L$

2

Higgs couplings

Improve sensitivity by $\times \sim 3$ \rightarrow Not $\times \sim 4.7$ expected from lumi, increase alone

→ Expect systematics to begin to dominate in almost all couplings → $H\mu\mu$ reaches <10% @ HL-LHC

Note also that sensitivity to Yukawa charm coupling also reaches O(2) @ HL-LHC:

Differential cross sections

Higgs width

Higgs width

Di-Higgs couplings

CMS 10² bb bb bb ττ 1111 , ___HH)/σ_{Theory} 10 Run 2 analyses statistically-driven \rightarrow Most sensitive channels reach SM within O(1) of the SM \rightarrow Combination of different 95% CL limit on $\sigma(pp)$ channels remains crucial 10² bb $\gamma\gamma$ Combined \rightarrow Persistence is key. 10 Link SM Observed Median exp. Early LHC Run Z Early LHC Run Z This paper This paper HL-LHC 68% exp. 95% exp.

Many exciting results from CMS to understand Higgs boson properties.

Excellent progress in exploiting kinematic information, more progress in the horizon.

Sadly, no new physics yet \mathfrak{S} , but we have just started looking \mathfrak{S} .

Entering *precision* era in Higgs properties as we proceed toward Run 3 & HL-LHC.

Stay tuned for more exciting results in the future!

CMS references

CMS LHC Run 1 + Run 2 '16 $4\ell + \gamma\gamma$ mass: https://doi.org/10.1016/j.physletb.2020.135425 CMS LHC Run 1 spin-parity: https://doi.org/10.1103/PhysRevD.92.012004 CMS LHC Run 2 $4\ell + \tau\tau$ anomalous HVV couplings: https://arxiv.org/abs/2205.05120 CMS LHC Run 2 4^{*l*} anomalous HVV couplings: https://doi.org/10.1103/PhysRevD.104.052004 CMS LHC Run 1 + Run 2 2016 $t\bar{t}H$ observation: https://doi.org/10.1103/PhysRevLett.120.231801 CMS LHC Run 2 $t\bar{t}H$ production and CP: https://doi.org/10.1103/PhysRevLett.125.061801 CMS LHC Run 2 $t\bar{t}H + tH$ multilepton production and CP: https://arxiv.org/abs/2208.02686 CMS LHC Run 2 *ττ* CP: https://doi.org/10.1007/JHEP06(2022)012 CMS LHC Run 2 couplings combination: https://doi.org/10.1038/s41586-022-04892-x CMS LHC Run 2 VH, $H \rightarrow c\bar{c}$: <u>http://arxiv.org/abs/2205.05550</u> CMS LHC Run 2 VBF $H \rightarrow$ invisible: https://doi.org/10.1103/PhysRevD.105.092007 CMS LHC Run 2 $t\bar{t}H \rightarrow$ invisible: https://arxiv.org/abs/2303.01214 CMS LHC Run 2 $Z(\rightarrow \ell \ell)H \rightarrow$ invisible: https://doi.org/10.1140/epic/s10052-020-08739-5 CMS LHC Run 2 $qq \rightarrow Hj, V(\rightarrow jj)H, H \rightarrow \text{invisible: https://doi.org/10.1007/JHEP11(2021)153}$ CMS LHC Run 2 WW cross sections: https://cds.cern.ch/record/2812784 CMS LHC Run 2 $\tau\tau$ cross sections: https://arxiv.org/abs/2204.12957 CMS LHC Run 2 $\gamma\gamma$ cross sections: https://doi.org/10.1007/JHEP07(2021)027 CMS LHC Run 2 2016 4ℓ cross sections and mass: https://doi.org/10.1007/JHEP11(2017)047 CMS LHC Run 2 4^{*l*} cross sections: https://doi.org/10.1140/epic/s10052-021-09200-x CMS LHC Run 2 $\tau\tau$ fiducial cross sections: https://doi.org/10.1103/PhysRevLett.128.081805 CMS LHC Run 2 $\gamma\gamma$ fiducial cross sections: https://arxiv.org/abs/2208.12279 CMS LHC Run 2 WW fiducial cross sections: https://doi.org/10.1007/JHEP03(2021)003 CMS LHC Run 2 4 ℓ fiducial cross sections: https://cds.cern.ch/record/2858768 CMS LHC Run 1 4 lifetime: https://doi.org/10.1103/PhysRevD.92.072010 CMS LHC Run 2 $ZZ \rightarrow 4\ell + 2\ell 2\nu$ off-shell analysis: <u>https://doi.org/10.1038/s41567-022-01682-0</u> CMS off-shell simulation study: https://cds.cern.ch/record/2826782 CMS LHC Run 2 di-Higgs bbWW: https://cds.cern.ch/record/2853597 CMS LHC Run 2 di-Higgs $WW\gamma\gamma$: https://cds.cern.ch/record/2840773 CMS LHC Run 2 VHH: https://cds.cern.ch/record/2853338 CMS HL-LHC sensitivity projections: https://cds.cern.ch/record/2647699

Other references

N Kauer and G. Passarino, "Inadequacy of zero-width approximation for a light Higgs boson signal": <u>https://doi.org/10.1007/JHEP08(2012)116</u> CERN Yellow Report 3: <u>http://cds.cern.ch/record/1559921</u> CERN Yellow Report 4: <u>https://cds.cern.ch/record/2227475</u>

Study of QCD K-factors for ggH production: <u>https://doi.org/10.1007/978-3-030-25474-2</u>

Back-up

(Less) common ways to produce a SM Higgs in *pp* collisions

tH and *tHW*: Allows to resolve relative phase of *Htt* and *HWW* couplings

Η

Ζ

Mass

Measure mass from the resonance line shape:

 \rightarrow Doable from the 4 ℓ and $\gamma\gamma$ final states to excellent precision (1-2% resolution)

Best measurement to date from CMS alone using $4\ell + \gamma\gamma$ Run 1 + Run 2 2016 data [link]: $m_H = 125.38 \pm 0.11$ (stat.) ± 0.08 (syst.) GeV

Spin from diboson decays

Extensive list of tests of spin-1 and -2 hypotheses from CMS using ZZ, WW and $\gamma\gamma$ decays [link]

→ Exploit angular correlations

The Higgs boson is consistent with spin 0. → Looser constraints on different spin-0 hypotheses

Spin-1 models excluded at >99.999% CL from CMS using ZZ + WW decays

Spin-2 models excluded at >99% CL from CMS using ZZ + WW decays, or at 99.87% for minimal gravitons using $ZZ + WW + \gamma\gamma$ decays

Anomalous spin-0 couplings: Hgg/Htt

 $A(Hgg) \sim a_2^{gg} \mathbf{f}_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{gg} \mathbf{f}_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$

Can apply EFT treatment in $gg \rightarrow H$ when $m_H < 2m_t$ \rightarrow Can be translated to Htt couplings

$$A(Htt) = -\frac{m_t}{v} \bar{\psi}_t (\kappa_t + i \tilde{\kappa}_t \gamma_5) \psi_t$$

With discovery of $t\bar{t}H$ associated production [link], one can probe Httcouplings directly

$$\rightarrow \text{If } f_{a3}^{ggH} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sgn}\left(\frac{a_3^{gg}}{a_2^{gg}}\right) \text{ and } f_{CP}^{Htt} = \frac{|\tilde{\kappa}_t|^2}{|\kappa_t|^2 + |\tilde{\kappa}_t|^2} \operatorname{sgn}\left(\frac{\tilde{\kappa}_t}{\kappa_t}\right),$$

the two fractions are related as $|f_{CP}^{Htt}| = \left[1 + 2.38\left(\frac{1}{|f_{a3}^{ggH}|} - 1\right)\right]^{-1}$

Anomalous HVV couplings from on-shell 4ℓ

Parameter	Scenario		Observed	Expected
f_{a3}	Approach 1 $f_{a2} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a2}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00004 \\ [-0.00007, 0.00044] \\ [-0.00055, 0.00168] \\ -0.00805 \\ [-0.02656, 0.00034] \\ [-0.07191, 0.00990] \\ 0.00005 \\ [-0.00010, 0.00061] \\ [-0.00072, 0.00218] \end{array}$	$\begin{array}{c} 0.00000 \\ [-0.00081, 0.00081] \\ [-0.00412, 0.00412] \\ 0.00000 \\ [-0.00086, 0.00086] \\ [-0.00423, 0.00422] \\ 0.0000 \\ [-0.0012, 0.0012] \\ [-0.0057, 0.0057] \end{array}$
f_{a2}	Approach 1 $f_{a3} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a3}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL	$\begin{array}{l} 0.00020\\ [-0.00010, 0.00109]\\ [-0.00078, 0.00368]\\ -0.24679\\ [-0.41087, -0.15149]\\ \cup [-0.00008, 0.00065]\\ [-0.66842, -0.08754]\\ \cup [-0.00091, 0.00309]\\ -0.00002\\ [-0.00178, 0.00103]\\ [-0.00694, 0.00536]\end{array}$	0.0000 [-0.0012, 0.0014] [-0.0075, 0.0073] 0.0000 [-0.0017, 0.0014] [-0.0082, 0.0073] 0.0000 [-0.0060, 0.0033] [-0.0206, 0.0131]
$f_{\Lambda 1} \left\{ \left. \right. \right. \right\}$	Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{a2}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float f_{a3}, f_{a2}	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00004 \\ [-0.00002, 0.00022] \\ [-0.00014, 0.00060] \\ 0.18629 \\ [-0.00002, 0.00019] \\ \cup [0.07631, 0.27515] \\ [-0.00523, 0.35567] \\ 0.00012 \\ [-0.00021, 0.00141] \\ [-0.00184, 0.00443] \end{array}$	0.00000 [-0.00016, 0.00026] [-0.00069, 0.00110] 0.00000 [-0.00017, 0.00036] [-0.00076, 0.00134] 0.0000 [-0.0013, 0.0030] [-0.0056, 0.0102]
$f_{\Lambda 1}^{Z\gamma} \left\{ \left. \right. \right. \right\}$	Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1} = 0$ Approach 1 float $f_{a3}, f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL	$\begin{array}{l} -0.00001 \\ [-0.00099, 0.00057] \\ [-0.00387, 0.00301] \\ -0.02884 \\ [-0.09000, -0.00534] \\ \cup [-0.00068, 0.00078] \\ [-0.29091, 0.03034] \end{array}$	0.0000 [-0.0026,0.0020] [-0.0096,0.0082] 0.0000 [-0.0027,0.0026] [-0.0099,0.0096]

\rightarrow Results from [<u>link</u>]

→ Approach 1 fixes or unconstrains couplings without assuming any relationship between each other.

→ Approach 2 assumes Λ_1 and $\Lambda_1^{Z\gamma}$ couplings are determined by the combination of a_1 and a_2 couplings according to SMEFT relations.

Anomalous spin-0 couplings: Ηττ

Beyond couplings: STXS (1.2)

Split production modes finer in specific final states, p_T^H , or m_{jj} Measure the cross section for each 'production bin'

Beyond couplings: STXS (1.2)

Beyond couplings: Fiducial differential xsecs

→ Another way to go beyond simple coupling constants is to measure the aggregate Higgs boson production xsec in bins of p_T^H , y_H or other kinematic variables within a fiducial selection volume.

 \rightarrow Example fiducial volume from CMS 4 ℓ analysis (also in next slide):

Requirements for the ${ m H} ightarrow 4\ell$ fiducial phase space						
Lepton kinematics and isolation						
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20\mathrm{GeV}$					
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10\mathrm{GeV}$					
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$					
Pseudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4)					
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{ m T}$					
Event topology						
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above						
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$					
Inv. mass of the Z_2 candidate	$12 < m_{Z_2} < 120 \text{GeV}$					
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$					
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{ m GeV}$					
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{ m GeV}$					

 \rightarrow Higgs boson production outside of the fiducial volume is 'background'.

 \rightarrow Measure true cross section after unfolding, and efficiency and acceptance corrections.

Fiducial volume in CMS 4ℓ

Requirements for the ${ m H} ightarrow 4\ell$ fiducial phase space					
Lepton kinematics and isolation					
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20 \mathrm{GeV}$				
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10\mathrm{GeV}$				
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m GeV}$				
Pseudorapidity of electrons (muons)	$ \eta <$ 2.5 (2.4)				
Sum of scalar p_T of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\mathrm{T}}$				
Event topology					
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above					
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$				
Inv. mass of the Z_2 candidate	$12 < m_{Z_2} < 120 \text{GeV}$				
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$				
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{ m GeV}$				
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{ m GeV}$				

Fiducial volume and obs. in CMS $\gamma\gamma$

Phase Space Region	Observable	Bin boundaries							
	$p_{\mathrm{T}}^{\gamma\gamma}$	0	5	10	15	20	25	30	35
		45	60	80	100	120	140	170	200
		250	350	450	∞				
	n _{jets}	0	1	2	3	≥ 4			
	$ y^{\gamma\gamma} $	0.0	0.1	0.2	0.3	0.45	0.6	0.75	0.90
Baseline		2.5	0.07	0.15	0.00	0.05	0.45	0 55	0 75
$p_{\rm T}^{\gamma_1}/m_{\alpha\alpha} > 1/3$	$ \cos(\theta^*) $	0.0	0.07	0.15	0.22	0.35	0.45	0.55	0.75
$p_{\rm T}^{\gamma_2}/m_{\star} > 1/4$	$ \phi^* $	1.0	0.05	0.1	0.2	03	0.4	0.5	07
$ n^{\gamma} < 2.5$	$ \Psi_{\eta} $	1.0	1.5	0.1	0.2	0.0	0.4	0.5	0.7
$\mathcal{I}_{\text{gen}}^{\gamma} < 10 \text{GeV}$		2.5	4.0	∞					
gen	$p_{\rm T}^{\gamma\gamma}$, $n_{\rm inte} = 0$	0	5	10	15	20	25	30	35
	r I , est	45	60	∞					
	$p_{\rm T}^{\gamma\gamma}$, $n_{iete} = 1$	0	30	60	100	170	∞		
	$p_{\gamma\gamma}^{\gamma\gamma}, n_{iets} > 1$	0	100	170	250	350	∞		
	n^b_{iata}	0	1	> 2					
	nlantons	0	1	> 2					
	pmiss	0	30	50	100	200	∞		
	n^{j_1}	30	40	55	75	95	120	150	200
	P1	∞	10	00	, 0	20	120	100	200
	$ \gamma^{j_1} $	0.0	0.3	0.6	0.9	1.2	1.6	2.0	2.5
1-jet	$ \Delta \phi_{\gamma\gamma,i_1} $	0.0	2.0	2.6	2.85	3.0	3.07	π	
Baseline $+ \ge 1$ jet	$ \Delta y_{\gamma\gamma,i_1} $	0.0	0.3	0.6	1.0	1.4	1.9	2.5	∞
$p_{\rm T}^{\rm J} > 30~{ m GeV}$	τ_{c}^{j}	< 15	15	20	30	50	80	∞	
$ \eta^{ m J} < 2.5$	$p_{\rm T}^{\gamma\gamma}, \tau_{Ci} < 15 { m GeV}$	0	45	120	∞				
	$p_T^{\gamma\gamma}$, 15 GeV $< \tau_C^j < 25$ GeV	0	45	120	∞				
	$v_{T}^{\gamma\gamma}$, 25 GeV $< \tau_{C}^{j} < 40$ GeV	0	120	∞					
	$n_{\gamma\gamma}^{\gamma\gamma}$ 40 GeV $< \tau_{\gamma}^{J}$	0	200	350	∞				
	p_{1} , p_{2}	30	40	65	90	150	~		
2.1.1	P_{T}	0.0	40 0.6	12	18	25	35	5.0	
2-jets $2 \text{ into } 1 \ge 2 \text{ into } 2$	$ \phi^{-} $	0.0	0.5	0.9	1.3	1.7	2.5	π	
baseline $+ \ge 2$ jets	$ \Delta \varphi_{J_1,J_2} $	0.0	2.0	27	2.95	3.07	π	70	
$p'_{\rm T} > 30 \text{ GeV}$	$ \vec{n}, \vec{n} - \vec{n} $	0.0	0.2	0.5	0.85	12	17	~	
$ \eta' < 4.7$	$\gamma_{1_1 1_2} \gamma_{\gamma \gamma}$	0.0	75	120	180	300	500	1000	\sim
	$ \Delta n_{i} $	0.0	0.7	1.6	3.0	5.0	∞	1000	\sim
VBF-enriched	$n_{\gamma}^{\gamma\gamma}$	0	30	60	120	200	00		
2-jets + $n_{\text{iets}} \ge 2$	r 1 19 ¹ 2	30	40	65	90	150	0		
$\Lambda n^{jj} > 3.5$	P_{T}	0.0	0.5	0.9	1.3	1.7	2.5	π	
$m^{jj} > 200 \text{GeV}$	$ \Delta \varphi_{J_1,J_2} $	0.0	2.0	27	2.95	3.07	π	71	
	$ \Delta \psi_{\gamma \gamma, j_1 j_2} $	0.0	2.0	2.7	2.90	3.07	π		

Fiducial volume and obs. in CMS WW

Observable	Condition
Lepton origin	Direct decay of $H \rightarrow W^+W^-$
Lepton flavors; lepton charge	$e\mu$ (not from τ decay); opposite
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}}^{l_1} > 25\mathrm{GeV}$
Trailing lepton $p_{\rm T}$	$p_{\rm T}^{l_2} > 13 { m GeV}$
$ \eta $ of leptons	$ \eta < 2.5$
Dilepton mass	$m^{ll} > 12 \mathrm{GeV}$
$p_{\rm T}$ of the dilepton system	$p_{\mathrm{T}}^{ll} > 30 \mathrm{GeV}$
Transverse mass using trailing lepton	$m_{\mathrm{T}}^{l_2} > 30 \mathrm{GeV}$
Higgs boson transverse mass	$m_{\mathrm{T}}^{\mathrm{H}} > 60 \mathrm{GeV}$

Jet counting: All jets clustered with the anti- $k_{\rm T}$ algo. with $p_{\rm T}>30~{\rm GeV}$

Fiducial volume in CMS au au

Fiducial region definition:

→ Leptons include FSR within ΔR < 0.1 → $\mu \tau_h$: $p_T^{\mu} > 20$ GeV, $|\eta^{\mu}| < 2.1$, $p_T^{\tau_h} > 30$ GeV, $|\eta^{\tau_h}| < 2.3$, $m_T^{\ell} < 50$ GeV → $e \tau_h$: $p_T^{e} > 25$ GeV, $|\eta^{\mu}| < 2.1$, $p_T^{\tau_h} > 30$ GeV, $|\eta^{\tau_h}| < 2.3$, $m_T^{\ell} < 50$ GeV → $e \mu$: $p_T^{\ell_1(\ell_2)} > 24$ (15) GeV, $|\eta^{\ell}| < 2.4$, $m_T^{\ell\ell} < 60$ GeV, $p_T^{miss} < 60$ GeV → $\tau_h \tau_h$: $p_T^{\tau_h} > 40$ GeV, $|\eta^{\tau_h}| < 2.1$, should have at least one jet with $p_T > 30$ GeV

Anomalous spin-0 HVV couplings & off-shell

95% CL

68% CL

15

10

5

 $\Gamma_{\rm H}$ (MeV)

2

0<u></u>

Anomalous spin-0 HVV couplings & off-shell

Paramotor	Condition	Observed			Expected		
raiametei	Condition	Best fit	68% CL	95% CL	68% CL	95% CL	
	SM-like	3.2	[1.5, 5.6]	[0.5, 8.5]	[0.6, 8.1]	[0.03, 11.3]	
Г., (Ма\/)	f _{a2} (u)	3.4	[1.6, 5.7]	[0.6, 8.4]	[0.5, 8.0]	[0.02, 11.3]	
	f _{a3} (u)	2.7	[1.3, 4.8]	[0.5, 7.3]	[0.5, 8.0]	[0.02, 11.3]	
	$f_{\Lambda 1}$ (u)	2.7	[1.3, 4.8]	[0.5, 7.3]	[0.6, 8.1]	[0.02, 11.3]	
f (10 ⁵)	$\Gamma_{H} = \Gamma_{H}^{SM}$	79	[6.6, 225]	[–32, 514]	[-78, 70]	[–359, 311]	
$I_{a2}(\times 10)$	Γ_{H} (u)	72	[2.7, 216]	[–38, 503]	[-82,73]	[–413, 364]	
$f (> 10^5)$	$\Gamma_{H} = \Gamma_{H}^{SM}$	2.2	[-6.4, 32]	[–46, 107]	[–55, 55]	[—198, 198]	
$I_{a3}(\times 10^{-})$	Γ_{H} (u)	2.4	[-6.2, 33]	[–46, 110]	[–58, 58]	[–225, 225]	
$f_{\Lambda1}$ ($ imes$ 10 ⁵)	$\Gamma_{H} = \Gamma_{H}^{SM}$	2.9	[–0.62, 17]	[-11, 46]	[-11,20]	[-47,68]	
	Γ_{H} (u)	3.1	[–0.56, 18]	[–10, 47]	[–11,21]	[–48, 75]	

Width and anomalous HVV coupling constraints using off-shell information [link]