Searches for new phenomena with the ATLAS detector

Inês Ochoa on behalf of the ATLAS Collaboration LCWS2023 (15-19 May 2023)

Exploring LHC's Run 2 data

(Recent) Highlights from New Physics Searches

- Pair-produced Higgsino search
 - <u>ATLAS-CONF-2023-009</u>
- Search for top-philic resonances
 - arXiv:2304.01678
 - arXiv:2304.14247
- Axion-like particles with forward proton tagging
 - arXiv:2304.10953
- · Periodic signals in clockwork / linear dilation models
 - ATLAS-CONF-2023-010

New channel:

- ✓ Excellent $\gamma\gamma$ mass resolution
- ✓ Large branching fraction $h \to b\bar{b}$

Gauge-mediated supersymmetric models $\tilde{\chi}$ decays to a light gravitino \tilde{G} via a Higgs or Z boson

$$\mathscr{B}(\tilde{\chi}^0_1 \to h\tilde{G}) + \mathscr{B}(\tilde{\chi}^0_1 \to Z\tilde{G}) = 100\,\%$$

√s = 13 TeV, 36.1-139 fb

Pair-produced Higgsinos in $bb\gamma\gamma$

• Three signal regions cutting on E_T^{miss} and $m_{b\bar{b}}$: lower (higher) E_T^{miss} targets low (high) $m(\tilde{\chi}_1^0)$

March 2023

100

ATLAS Preliminary

- Control regions from $m_{\gamma\gamma}$ sidebands, photon identification and isolation criteria.
- Validation regions from m_{bb} sidebands.

resonances **Top-philic**

Top-philic heavy resonances

Following first observation of SM four-top production by ATLAS and CMS!

arXiv:2304.01678

 $\overset{Z'}{\wedge}$

New heavy vector boson Z' that couples predominantly to top-quark. ٠

- Boosted hadronic tops from Z' decay reconstructed with large-radius jets (J).
- Broad signal m_{II} distribution (invariant mass of top-pair system). ٠
- Dominant systematic from NLO top-pair modeling.

Top-philic heavy resonances

- Minimal model-dependence search using *BumpHunter* to fit m_{JJ:} no significant deviations observed.
- CLs limits considering simplified Z' signal model.

Observed (expected) limits range from 21 (14) fb to 119 (86) fb depending on the choice of model parameters

Top-philic light resonances $a \rightarrow \mu\mu$ search

- Final state signature with three leptons $e\mu\mu$ or $\mu\mu\mu$ and jets.
- 12 GeV < $m_{\mu\mu}$ < 77 GeV (for rejecting Y and Z decays).
- Event categorisation by #muons, #jets, #b-jets and $m_{\mu\mu}$.

Extended Higgs sectors, dark matter models

Axion-like-particles with the ATLAS Forward Proton (AFP) detector

 Fractional energy loss of a scattered proton can be inferred from AFP tracks and beam optics:

 $\xi_{\mathsf{AFP}} = 1 - E_{scattered} / E_{beam}$

- Same quantity can be calculated independently from central photons: $\xi^{\pm}_{\gamma\gamma} = (m_{\gamma\gamma}/\sqrt{s})e^{\pm y_{\gamma\gamma}}$
- Acceptance for mass range 150 1600 GeV.
- Exclusive and single-dissociative processes account for 60% (40%) and 40% (60%) of selected signal in range $m_{\gamma\gamma} < 500 \ (m_{\gamma\gamma} \ge 500)$ GeV.

Axion-like-particles with the ATLAS Forward Proton (AFP) detector

- A total of 441 events are observed in the target mass range (no event passed matching for AFP stations on both sides of ATLAS).
 - Most significant excess at 454 GeV (local significance of 2.51σ).

signals Periodic

m_{ee}[GeV]

m_{vv}[GeV]

Periodic signals

- Strategy: continuous wavelet transformations to obtain mass vs frequency maps
 - Classifier NN to search for CW/LD models and auto-encoder for generic periodic excesses

Periodic signals

- Strategy: continuous wavelet transformations to obtain mass vs frequency maps
 - Classifier NN to search for CW/LD models and auto-encoder for generic periodic excesses

Exp. and obs. exclusion limits for CW model in k-M₅ space

- No significant deviations are observed in data.
- Limits are set for the ٠ parameters in the CW/LD model (gravity scale M₅ and turn-on mass k)

Summary

- A vast program of searches for new physics is taking place in ATLAS.
- We continue to develop new analysis ideas and methods to **fully explore the Run 2 data**, as we prepare to collect twice as much data during Run 3 at √s=13.6 TeV.

ATLAS-CONF-2023-009

Pair-produced Higgsinos in $b\bar{b}\gamma\gamma$

Channel	SR1h	SR1Z	SR2	
Observed events	3	5	2	
Total SM events	3.9 ± 0.6	6.4 ± 1.0	1.7 ± 0.7	
$\gamma\gamma$ events	2.5 ± 0.5	3.7 ± 0.7	0.88 ± 0.26	
γj events	0.47 ± 0.28	0.8 ± 0.5	0.24 ± 0.15	
$j\gamma$ events	0.088 ± 0.014	0.27 ± 0.04	0.00 ± 0.6	
jj events	< 0.01	0.07 ± 0.05	$0.22^{+0.24}_{-0.22}$	
ttH events	0.41 ± 0.04	0.297 ± 0.025	0.27 ± 0.06	
Higgs (other)	0.40 ± 0.08	1.22 ± 0.26	0.064 ± 0.011	
$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	0.03	0.04	0.03	
$S_{\rm obs}^{95}$	4.8	5.5	4.8	
Sev.	$5.4^{+2.2}_{-1.5}$	$6.7^{+2.6}_{-1.8}$	$4.6^{+1.6}_{-0.8}$	
p(s=0)	$0.50^{-1.5}$	$0.50^{-1.8}$	0.43	

Inês Ochoa (LIP)

Top-philic heavy resonances

21

Top-philic heavy resonances

Uncertainty categories	Relative contribution to the total uncertainty [%]		
_	1.5 TeV	3 TeV	
	$c_t = 1$	$c_t = 4$	
$t\bar{t}$ +jets modelling	78	87	
Jet energy scale and resolution	40	46	
Functional fit and extrapolation	41	23	
Signal bias	35	7.3	
Statistical uncertainty on signal MC	26	19	
Single-top-quark modelling	11	8.9	
Flavour tagging	9.4	9.8	
Minor backgrounds modelling	6.9	5.3	
Other uncertainties	1.5	2.1	
Luminosity	0.2	2.0	
Total systematic uncertainty	95	96	
Statistical uncertainty	32	29	

Top-philic light resonances

	Sign	al Regions	on-Z Con	trol Region	tī Control Region
Channel	eμμ	μμμ	еµµ	μμμ	еµµ
Binning	$m^a_{\mu\mu}$	$m^a_{\mu\mu}$	$n_{\rm jets}, n_{b-\rm jets}$	$n_{\rm jets}, n_{b-\rm jets}$	$p_{\mathrm{T}}^{\mu,\mathrm{fake}}$
nelectrons	1	0	1	0	1
n _{muons}	2	3	2	3	2
	$12 < m^a_{\mu\mu} < 77$	$12 < m^a_{\mu\mu} < 77$	$77 < m^a_{\mu\mu} < 107$	$77 < m^a_{\mu\mu} < 107$	$12 < m^a_{\mu\mu} < 77$
$m_{\mu\mu}$ [GeV]		and		or	
	-	$m_{\mu\mu}^{\rm other} < 77 \text{ or} > 107$	-	$77 < m_{\mu\mu}^{\rm other} < 107$	-
n _{jets}		1 or 2			
n _{b-jets}	≥ 1				1
	$B(t \rightarrow bH^+, H^+ \rightarrow W^+ a, a \rightarrow \mu\mu)$ $B(t \rightarrow bH^+, H^+ \rightarrow W^+ a, a \rightarrow \mu\mu)$ $B(t \rightarrow 0$	ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 95% CL Limits $m_{H^*} = 140 \text{ GeV}$	30 35	Observed Limit Expected $\pm 1\sigma$ Expected $\pm 2\sigma$	5

Search range in m_{H^+} : 120 - 160 GeV

m_a [GeV]

Axion-like-particles with the ATLAS Forward Proton (AFP) detector

Source	Uncertainty				
Signal yield uncertainty					
Pile-up reweighting	+2.7 % -2.6				
Photon identification efficiency	$\pm 2.4\%$ +1.6% -1.5				
Photon isolation efficiency Beam optics between ATLAS central and AFP detectors	$\pm 1.9\%$ +0.8 $_{0}$				
AFP global alignment	$\begin{array}{c} -3.4 \\ +10.0 \\ -8.6 \\ +3.0 \\ -2.2 \\ +0.0 \\ -0.2 \\ -0.0 \\ -$				
Proton reconstruction efficiency Showering in the AFP					
Background modelling (mass-dependent)	$\pm (0.02-0.7)$ events				
Signal modelling					
Photon energy resolution	$^{+14.1}_{-4.8}$				
Photon energy scale	±(0.5-1.0)%				
Signal cross-section uncertainty					
Soft survival factor (exclusive process)	±2%				
Soft survival factor (single-dissociative process)	±10%				
Soft survival factor (double-dissociative process)	±50%				

Axion-like-particles with the ATLAS Forward Proton (AFP) detector

Inês Ochoa (LIP)

25

ATLAS-CONF-2023-010

ATLAS-CONF-2023-010

Periodic signals

