Probing the nature of electroweak symmetry breaking with Higgs boson pairs in ATLAS

Shuzhou Zhang University of Michigan On behalf of the ATLAS Collaboration LCWS 2023 @ SLAC

The κ_{λ} is defined as λ/λ_{SM}

HH production in SM

- The di-Higgs is dominantly produced by the ggH and VBF processes.
- Di-Higgs production in SM is dominated by non-resonant gluon-fusion process.
 - The triangle diagram involves the Higgs self-coupling and is sensitive to κ_{λ} .
 - The box diagram involves the Top Yukawa coupling and κ_t .
 - Destructive interference between the triangle and box diagram results in small cross section.
- The vector boson fusion (VBF) process also contributes to the di-Higgs production.
 - Smaller cross section compared with ggF.
 - VBF involves trilinear, *HHVV* and *VVH* diagrams.
 - Sensitive to κ_{λ} and $\kappa_{\nu\nu}$.

SITY OF MICHIGAN

• Small cross-section compared with single Higgs production. Hard to measure.

VBF

HH decay channels

- **bbbb:** largest branching ratio, large QCD multi-jets and ttbar backgrounds.
- **bbWW:** large branching ratio, large ttbar background (<u>Phys.</u> Lett. B 801 (2020) 135145).
- **bb***ττ*: relatively small BR and background.
- **bb***y***y**: small BR, good mass resolution, small background.
- γγWW: small BR, good mass resolution (partial run 2 result: Eur. Phys. J. C 78 (2018) 1007).

In this talk ATLAS measurement on HH production in $bb\gamma\gamma$, $bb\tau\tau$ and bbbb channel using full Run 2 data will be reported.

 $HH \rightarrow bb\gamma\gamma$

Phys. Rev. D 106, 052001

$HH \rightarrow bb\gamma\gamma$

- Signature of the $bb\gamma\gamma$ channel:
 - A clean channel with small background.
 - $H \rightarrow \gamma \gamma$ decay provides excellent mass resolution.
 - Small branching ratio, ~0.26%.
- Analysis strategy and event selection:
 - Multivariate method (BDT) is used to separate signal from backgrounds.
 - Two photons with invariant mass in the Higgs mass window [120, 130] GeV.
 - Exactly 2 b-tagged jets.

ERSITY OF MICHIGAN

• No leptons (electron or muon).

$$m_{bb\gamma\gamma}^* = m_{bb\gamma\gamma} - m_{bb} - m_{\gamma\gamma} + 250 \text{ GeV}$$

BDT in $HH \rightarrow bb\gamma\gamma$

RSITY OF MICHIGAN

- Events are split into the low and high mass region according to m^*_{bbyy} .
- Events are further split into the loose and tight BDT region in both high and low mass region.

Phys. Rev. D 106, 052001

Results of $HH \rightarrow bb\gamma\gamma$

- The statistical fitting is performed on $m_{\gamma\gamma}$ distribution in each category.
- Limits are set on μ_{SM} and κ_{λ} .

RSITY OF MICHIGAN

• Observed (expected) μ_{SM} : 4.2 (5.7).

$HH \rightarrow bb\tau\tau$

$HH \rightarrow bb\tau\tau$

- Signature of the $bb\tau\tau$ channel:
 - Relative clean background.
 - Moderate branching ratio, ~7.3%
 - Dominate background comes from fake τ , hard to estimate.
- Analysis strategy and event selection:
 - Backgrounds from fake τ are estimated using fake factor method.
 - Events are split into different categories according to the τ decay mode (leptonic or hadronic), based on the type of trigger accepted the event.
 - Exactly 2 b-tagged jets.
 - Require two hardonic τ or $\tau + e/\mu$.
 - $m_{\tau\tau} > 60$ GeV.

MVA and result of $HH \rightarrow bb\tau\tau$

- To improve signal/background ratio, boosted decision tree (BDT) is used in the $\tau_{had}\tau_{had}$ category and neural network is used in the $\tau_{had}\tau_{lep}$ category.
- The statistical fitting is performed on BDT and NN predicted score.
- Observed (expected) upper limits of μ_{SM} : 4.7 (3.9).

$HH \rightarrow bbbb$

$HH \rightarrow bbbb$

- Signature of the *bbbb* channel:
 - Large background comes from QCD.
 - Largest branching ratio, ~33%
- Analysis strategy and event selection:
 - Both VBF and ggH are included.
 - Fake b-jet backgrounds are estimated using data driven method from a 2b control region.
 - Exactly 4 b-tagged jets.
 - Events are split into six categories according to $\Delta \eta_{HH}$ and X_{HH} in ggH channel, while events are split into two categories according to $\Delta \eta_{HH}$ in VBF channel.

Results of $HH \rightarrow bbbb$

- The statistical fitting is performed on m_{HH} distribution in each category.
- Limits are set on μ_{SM} and κ_{λ} .

/ERSITY OF MICHIGAN

• Observed (expected) upper limit on μ_{SM} : 5.4 (8.1)

HH combination

UNIVERSITY OF MICHIGAN

- Combined three most sensitive channel: bbbb, $bb\gamma\gamma$ and $bb\tau\tau$.
- Combined 95% upper limits on μ_{HH} : 2.4

arXiv:2211.01216

HH combination, $\kappa_{2\nu}$

16

HH combination, κ_{λ}

H + *HH* combination

- Single Higgs boson production is also sensitive to κ_{λ} when loop corrections are ^g ~ 00000 included.
- Combined limits from single and double Higgs production:

Projected result at HL-LHC ($bb\gamma\gamma + bb\tau\tau$)

RSITY OF MICHIGAN

- Measurement from Run 2 data with integrated luminosity of 139 fb⁻¹ at 13 TeV are projected to the HL-LHC at 14 TeV and total integrated luminosity of 3000 fb⁻¹.
- The estimated significance of the SM HH production is 3.2σ with systematic uncertainties included.

Kλ

19

Projected result at HL-LHC ($bb\gamma\gamma + bb\tau\tau + bbbb$)

• The estimated significance of the SM HH production is 3.4 σ with systematic uncertainties included after the including the *bbbb* channel.

Summary

- Searches for HH production in the three most sensitive channels by ATLAS are reported.
 - *bbyy*: observed (expected) upper limit on μ_{HH} : 4.2 (5.7).
 - $bb\tau\tau$: observed (expected) upper limit on μ_{HH} : 4.7 (3.9).
 - *bbbb*: observed (expected) upper limit on μ_{HH} : 5.4 (8.1).
- Combined HH measurement result is also reported:
 - Combined upper limit on μ_{HH} : 2.4.
- Projected measurement result of HH production on the HL-LHC is also reported.

Back up

 $HH \rightarrow bb\gamma\gamma$

23

$HH \rightarrow bb\gamma\gamma$

$HH \rightarrow bb\tau\tau$

 $\tau_{\rm lep} \tau_{\rm had}$ channel

 $r_{\rm MJ}$ Fraction of multi-jet events in the template

$HH \rightarrow bb\tau\tau$

 $\tau_{\rm had} \tau_{\rm had}$ channel

 $\tau_{\rm had} \tau_{\rm had} \ {\rm SR}$

$HH \rightarrow bbbb$ categories

$HH \rightarrow bbbb$

$$X_{Wt} = \sqrt{\left(\frac{m_W - 80.4 \,\text{GeV}}{0.1 \,m_W}\right)^2 + \left(\frac{m_t - 172.5 \,\text{GeV}}{0.1 \,m_t}\right)^2}$$

$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \,\text{GeV}}{0.1 \, m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \,\text{GeV}}{0.1 \, m_{H2}}\right)^2}$$

H + *HH* combination

 \bar{q}

UNIVERSITY OF MICHIGAN

>

H