

Status Report on the Magnetohydrodynamic Simulations of a Tapered Plasma Lens for Optical Matching at the ILC e⁺ Source

M. Formela¹, G. Moortgat-Pick¹, N. Hamann¹, G. Loisch², M. Mewes², M. Thévenet², J. Osterhoff²

¹University of Hamburg, Hamburg, Germany ²Deutsches Elektronen Synchrotron DESY, Hamburg, Germany

LCWS2023

18/05/2023

- Need to collimate divergent e+
 - ➔ Optical Matching Device

• Principle of Plasma Lens:

1) Inlets fill capillary with gas (e.g. H2, Ar)

- 2) Voltage on electrodes ignites plasma
- 3) Electrons are accelerated (Electric current)
- 4) Current induces <u>azimuthal</u> magnetic field B_{ϕ}
- 5) Magnetic field focuses incoming charged particle beam

Optmization of PL Design

Particle Tracking Simulations

- Goal: find optimized PL design
- Conditions:
 - 1) ILC e+ distribution
 - 2) No Beam self-interaction
 - 3) Idealised plasma lens:
 - ➔ No Plasma dynamics
 - → Ideal magnetic field (from $j(x,y,z,t) = j_z(z)$)

Preliminary (M)HD Results

- Simulations in COMSOL
- Effective 3D Model (2D with axial sym.)
- Simulated Field underperformes!
 - Probably no problem
 - 1) Large overhead
 - 2) More realistic simulation needed

- Implementations needed:
 - 1) Argon reactions (instead of H2)
 - 2) More realistic electrode geometry
 - 3) Angled Inlets
 - 4) Realistic materials of components
 - 5) Rotating target
- To study:
 - 1) Plasma response to multi-pulse discharges
 - → Demanding e+ beam time structure
 - 2) Gas flow into downstream accelerator
 - → Discharges in cavity possible (no acceleration)
 - 3) Heat load on geometries
- Compare with prototype experiments by Niclas Hamann (next talk)

	Repetition rate	Duration	Spacing
Pulse	5 Hz	727 µs	199 ms
Bunch	1.8 MHz	538 ps	554 ns

LCWS2023

Thank you for listening!