Mechanical and thermal stress on a pulsed solenoid for positron capture at the ILC undulator-based positron source

Status of simulations and mechanical design

<u>**C. Tenholt</u></u>, G. Loisch, M. Mentink, M. Fukuda, G. Moortgat-Pick, T. Okugi, S. Riemann, P. Sievers, K. Yokoya</u>**

International Workshop on Future Linear Colliders SLAC National Accelerator Laboratory

16.05.2023

Universität Hambur

UΗ

HELMHOLTZ

ILC undulator-based positron source

Introduction to layout and technical challenges

- Fast rotating target wheel
- 1ms-positron pulse duration
- OMD for positron capturing
 - Flux concentrator
 - Focus variation during long pulses
 - Quarter-wave transformer
 - Limited yield

Principal Layout: Ti-Wheel with a Diameter of 1.0 m, rotating at 100 m/s, 2000 rpm.

- New approach: Pulsed solenoid
 - Stable and reproducible focus
 - High magnetic flux density
 - Compatible with long pulse duration
 - Manageable heat load in solenoid
 - Manageable heat load on target (!?)

Pulsed solenoid for positron focusing

Background and previous work

- Pulsed solenoid was e.g. used at LEP
- Constant, small coil winding cross-section for uniform current density
- Pulsed to reduce power/thermal load
- Potentially higher yield (!?)
- Prel. parameters:
 - ~50 kA peak current
 - 4 ms half-sine pulse + 1ms flat-top
 - ▶ 7 turns, linear taper (20mm \rightarrow 80mm)
 - Peak field ~5 T
 - Average heat load on target: 73 W + 711 W
 - Peak force on wheel 612 N

Ferrite shielding

- 2D & 3D simulation in Comsol w/ moving titanium plate (100m/s) & 47kA peak current
- Ferrite shield plates around solenoid
- Increase of peak magnetic flux in solenoid <10%</p>
- Reduction of area & amplitude of mag. field on wheel
- Induced heat reduced 73W + 711W → 31W + 298W
- ▶ Reduction of peak force on target 612N \rightarrow 263N
- Increase of peak B(z) ~10%

Magnetic field stability

Variation of magnetic field during flat-top current

- Transient current distribution subject to skin-effect
- Skin depth @125 Hz ~6 mm \rightarrow current distribution should be stable
- < 1% deviation of field simulated</p>

Yield simulations

Brief overview of simulations target \rightarrow damping ring

- Yield of undulator-based positron source w/ solenoid matching device simulated
- Significant yield improvement to QWT
- $\blacktriangleright Possible trade-off: target heatload \leftrightarrow yield$
- Further optimisation maybe possible

	Beamloss Power				Positron Yield	
	@dogleg	@booster	@EC	@DR	@capture (Z <7mm)	@DR
QWT	0.677 kW	0.014 kW	4.01 kW - 5.56 kW	13.15 kW - 14.3 kW	1.07	~1.1
Pulse solenoid w/o shield	0.927 kW	0.055 kW	5.86 kW - 7.93 kW	17.39 kW - 16.01 kW	1.81	1.91
Pulse solenoid with shield	0.871 kW	0.064 kW	5.58 kW - 7.90 kW	17.73 kW - 16.24 kW	1.64	1.74

Coil stress

Dynamic deformation w/o support & heat load

- Average power in coil ~10 kW
- Peak mag. flux 4.6 T
- von-Mises stress ~570 MPa
 - Soft Cu tensile strength ~200MPa
 - \blacktriangleright very sensitive to exact shape
 - ► → very localized

- Has to be iterated w/ mechanical design (solenoid + support structure + connectors)
- Global optimisation pending (current amplitude & waveform, coil shape, etc.)
- If stresses too high: multiple layers + reduced peak current

Insulated **Solenoid construction** support rods **Possible mechanical design** Solenoid coil Tapered winding 7 planar windings with interconnections Conductor cooled from inside Metal supports to hold coil Metal support bridges Solenoid coil Support rods insulated from support bridges ► Washers e.g. of SiN ceramics Magnetic shielding cut at support locations Influence on field to be determined Ceramic washers Metal support rod Main shielding to target unaffected Metal support bridges

Summary & Outlook

Recent progress and next steps

- Solenoid provides superior yield compared to QWT
- Heat load on coil & target wheel no show stoppers
- Mechanical stress significant, exact mech. design required
- Simulations now moving to answering mech. design questions
- Collaboration being set up formally to build prototype
- Global optimisation of solenoid parameters could further reduce stresses & heat load

Thank you for your attention!

Contact

Carmen Tenholt (carmen.tenholt@desy.de), Gregor Loisch DESY, Hamburg Matthias Mentink, Peter Sievers CERN, Geneva Masafumi Fukuda, Toshiyuki Okugi, Kaoru Yokoya KEK, Tsukuba Sabine Riemann DESY Zeuthen Gudrid Moortgat-Pick University Hamburg