Optimization of CW Polarized Positron Source for JLab

Sami Habet

IJCLab & JLab

May 16, 2023

This research work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under agreement STRONG - 2020 - No 824093
Plan

1. Target optimization

2. Collection system

3. Momentum collimation

4. Longitudinal optimization

5. Conclusion
Plan

1. Target optimization
2. Collection system
3. Momentum collimation
4. Longitudinal optimization
5. Conclusion
Plan

1. Target optimization
2. Collection system
3. Momentum collimation
4. Longitudinal optimization
5. Conclusion
Plan

1. Target optimization
2. Collection system
3. Momentum collimation
4. Longitudinal optimization
5. Conclusion
Plan

1. Target optimization
2. Collection system
3. Momentum collimation
4. Longitudinal optimization
5. Conclusion
Outline

1. Target optimization
2. Collection system
3. Momentum collimation
4. Longitudinal optimization
5. Conclusion
Target optimization

Unpolarized mode

- Efficiency: \(\epsilon = \frac{N_{e^+}}{N_{e^-}} \)

Polarized mode

- Figure-of-Merit FoM = \(\epsilon P_{e^+}^2 \)
Target optimization

Unpolarized mode

- Efficiency: \(\epsilon = \frac{N_{e^+}}{N_{e^-}} \)

Polarized mode

- Figure-of-Merit FoM: \(\text{FoM} = \epsilon P^2_{e^+} \)

\(T_c = 120 \text{MeV}, \ t_w = 4 \text{mm}, \ Z = 74, \ \Delta \ p/p = \pm 10\% \)
Target optimization

Unpolarized mode

\[T_\gamma = 120 \text{MeV}, \quad \Delta \frac{P}{P} = \pm 10\%, \quad Z = 74 \]

Polarized mode

\[\theta = \pm 10^\circ \]
\[\theta = \pm 5^\circ \]
\[\theta = \pm 2.5^\circ \]
Quarter Wave Transformer

- Reduce the transverse angular divergence $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance:
 - Radial acceptance $r_{QWT}^0 = \frac{B_2}{B_1} R$
 - Transverse acceptance $p_{QWT}^t = \frac{eB_1 R}{2}$

L_1: Short solenoid length
B_1: Magnetig field in L_1
R: Accelerator aperture
Quarter Wave Transformer

- Reduce the transverse angular divergence
 \[x_p = \frac{p_x}{p} \quad \text{and} \quad y_p = \frac{p_y}{p}. \]
- Rotate the transverse phase space \((x, x_p)\) and \((y, y_p)\) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance:
 - Radial acceptance
 \[r_{QWT}^0 = \frac{B_2}{B_1} R \]
 - Transverse acceptance
 \[p_{QWT}^t = \frac{eB_1 R}{2} \]

- \(L_1 \): Short solenoid length
- \(B_1 \): Magnetic field in \(L_1 \)
- \(R \): Accelerator aperture
Quarter Wave Transformer

- Reduce the transverse angular divergence
 \[x_p = \frac{p_x}{p} \text{ and } y_p = \frac{p_y}{p}. \]
- Rotate the transverse phase space \((x, x_p)\) and \((y, y_p)\) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance:
 - Radial acceptance
 \[r_0^{QWT} = \frac{B_2}{B_1} R \]
 - Transverse acceptance
 \[p_t^{QWT} = \frac{eB_1 R}{2} \]

- \(L_1\): Short solenoid length
- \(B_1\): Magnetic field in \(L_1\)
- \(R\): Accelerator aperture
Quarter Wave Transformer

- Reduce the transverse angular divergence
 \[x_p = \frac{p_x}{p} \quad \text{and} \quad y_p = \frac{p_y}{p}. \]
- Rotate the transverse phase space \((x, x_p)\) and \((y, y_p)\) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance:
 - Radial acceptance
 \[r_{0}^{QWT} = \frac{B_2}{B_1} R \]
 - Transverse acceptance
 \[p_{t}^{QWT} = \frac{eB_1 R}{2} \]
- \(L_1\): Short solenoid length
- \(B_1\): Magnetic field in \(L_1\)
- \(R\): Accelerator aperture
Goal

- Reduce the longitudinal energy spread of the accepted e^+ at $p = 60 \text{ MeV/c}$
- $f = 1497 \text{ Mhz}$
- $E = 1 \text{ MV/m}$
- $L_{cell} = 0.2 \text{ cm}$
- $r_{cell} = 3 \text{ cm}$
Outline

1. Target optimization
2. Collection system
3. Momentum collimation
4. Longitudinal optimization
5. Conclusion
Beam size optimization

Matching section

- **Periodic Twiss in FODO:**
 \[\beta_{x,y_{in}} = \beta_{x,y_{out}} \]

- **Minimum beam size condition:**
 \[\beta_x = \beta_{x_{MIN}} \rightarrow \alpha_x = 0 \]

\[B_1 = 2.5 \ T \ B_2 = 0.05 \ T \]

\[E = 1 \text{ MV/m} \]

\[P \text{ [MeV/c]} \]
Outline

1. Target optimization
2. Collection system
3. Momentum collimation
4. Longitudinal optimization
5. Conclusion
Longitudinal optimization: Energy spread and bunch length

- **Compression factor** =

 \[
 \frac{\text{Bunch length}_{\text{Entrance}}}{\text{Bunch length}_{\text{Exit}}} \]

- \(C = \frac{1}{1 + [R_{56} \times \kappa]} \)

- \(\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E_0 + eV_0 \cos \phi} \sin \phi \)

Where:
- \(R_{56} \): Longitudinal chicane element.
- \(k = 2\pi \frac{f}{c} \ [m^{-1}] \)
- \(f \) is the cavity frequency
- \(eV_0 \) Cavity acceleration [MeV]
- \(E_0 \) Central energy [MeV]
- \(\phi \) Cavity phase advance.
Longitudinal optimization: Energy spread and bunch length

- **Compression factor** = \(\frac{\text{Bunch length}_{\text{Exit}}}{\text{Bunch length}_{\text{Entrance}}} \)

- \(C = \frac{1}{1+[R_{56} \times \kappa]} \)

- \(\kappa = \frac{d\delta p}{dz} = \frac{-keV_0}{E_0 + eV_0 \cos \phi} \sin \phi \)

- **Where:**
 - \(R_{56} \): Longitudinal chicane element.
 - \(k = 2\pi \frac{f}{c} \) [\(m^{-1} \)]
 - \(f \) is the cavity frequency
 - \(eV_0 \) Cavity acceleration [MeV]
 - \(E_0 \) Central energy [MeV]
 - \(\phi \) Cavity phase advance.
Transmission and Current

Transmission

$\frac{N_{e^+}}{N_{e^+_{Target}}} = 10^0$ to 10^{-1}

$s [m]$

$P = 123 \text{ MeV/c}$

$\sigma_{dp/p} = 0.68 \%$

$\sigma_z = 1.5 \text{ mm}$

Central momentum [MeV/c]

Current [nA]

Sami Habet

IJCLab & JLab

The 2023 International Workshop on Future Linear Colliders (LCWS2023)
summary: Polarized mode

<table>
<thead>
<tr>
<th>Ce+BAF Parameter</th>
<th>e+ model</th>
<th>Target value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{dp/p}$ [%]</td>
<td>0.68</td>
<td>± 1%</td>
</tr>
<tr>
<td>σ_z [ps]</td>
<td>4</td>
<td>≤ 4</td>
</tr>
<tr>
<td>N ϵ_n [mm mrad]</td>
<td>140</td>
<td>≤ 40</td>
</tr>
<tr>
<td>Mean Momentum [MeV/c]</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>e^+ ($P > 60%$)</td>
<td>170 nA</td>
<td>50 nA</td>
</tr>
</tbody>
</table>
Unpolarized mode: Transmission current

Positron Injector for Un-Polarized mode

- **Transmission** $\frac{N_{e^+}}{N_{e^+_{\text{target}}}}$
- **$P = 123$ MeV/c**
- **$\sigma_{dp/p} = 0.53\%$**
- **$\sigma_z = 0.7$ mm**

- s [m] from 0 to 40
- Current [nA] from 10^1 to 10^7
- Momentum [MeV/c] from 10^1 to 10^7

Sami Habet

IJCLab & JLab

The 2023 International Workshop on Future Linear Colliders (LCWS2023)
summary: Unpolarized mode

<table>
<thead>
<tr>
<th>Ce+BAF Parameter</th>
<th>e(^+) model</th>
<th>Target value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{dp/p}) [%]</td>
<td>0.5</td>
<td>(\pm 1)%</td>
</tr>
<tr>
<td>(\sigma_z) [ps]</td>
<td>2</td>
<td>(\leq 4)</td>
</tr>
<tr>
<td>(N \epsilon_n) [mm mrad]</td>
<td>123</td>
<td>(\leq 40)</td>
</tr>
<tr>
<td>Mean Momentum [MeV/c]</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>(e^+ (P > 20%))</td>
<td>700 nA</td>
<td>1 (\mu)A</td>
</tr>
</tbody>
</table>
Conclusion

- The performance of the positron system is heavily dependent on the central momentum. The central momentum should be set to 15 MeV/c to obtain a high yield of positrons, while a high polarization requires a central momentum of 60 MeV/c.

- The QWT plays a crucial role in selecting the desired momentum and reducing the spread of transverse angles.

- Including the electron beam after the target could be an interesting way to test our layout.

- Our positron injector is unique because it operates using a CW mode, which is challenging compared to other positron sources.
Acknowledgements

This research work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under agreement STRONG - 2020 - No 824093.

THANK YOU FOR YOUR ATTENTION!
Twiss functions

QWT Polarized 2023 30Million e^ - E = 1MV/m B_2 = 0.05T
Beam size

QWT Polarized 2023 30Million e⁻ E = 1MV/m B₂ = 0.05T

\(\sigma_x [m] \)

\(s [m] \)

\(0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \)
Normalized emittance

QWT Polarized 2023 30Million e− E = 1MV/m B2 = 0.05T

Normalized x = 0.00148770437816591 [m]
Normalized y = 0.0014545048748436 [m]
Transmission and current

QWT Polarized 2023 30 Million e⁻ \(E = 1 \text{MV/m} \) \(B_2 = 0.05T \)

- Transmission \(N_{e^-}/N_{\text{source}} \)
- Efficiency \(N_{e^-}/N_e \)
- Current [nA]

- \(B_1 = 2.5T \) \(B_2 = 0.05T \)
Momentum collimation

\[B_1 = 2.5 \quad T \quad B_2 = 0.05T \]

- Entrance Chicane
- Middle: Collimator Entrance
- Middle: Collimator Exit

Sami Habet IJCLab & JLab
The 2023 International Workshop on Future Linear Colliders (LCWS2023)
Angular distribution
Transverse space

- The transmitted positrons are within the acceptance of the QWT
- \(p_t^{QWT} = \frac{eB_1R}{2} \). = 10.31°
- \(r_0^{QWT} = \frac{B_2}{B_1} R = 0.6 \text{ mm} \)
Un-Polarized mode: Positron Capture

- Reduce the magnetic field in the first solenoid.
- Rotate the transverse phase space \((x, x_p)\) and \((y, y_p)\) at the exit of the QWT.
- Use the same QWT as an energy filter.
- QWT acceptance:
 - Radial acceptance
 \[r_0^{QWT} = \frac{B_2}{B_1} R \]
 - Transverse acceptance
 \[p_t^{QWT} = \frac{eB_1 R}{2} \]

- \(L_1 = 0.24 \text{ cm}:\) Short solenoid length
- \(B_1 = 0.96 \text{ T}:\) Magnetic field over \(L_1\)
- \(R = 3 \text{ cm}:\) Accelerator aperture
Un-Polarized mode: Positron Capture

- Reduce the magnetic field in the first solenoid.
- Rotate the transverse phase space \((x, x_p)\) and \((y, y_p)\) at the exit of the QWT.
- Use the same QWT as an energy filter.
- QWT acceptance:
 - Radial acceptance
 \[
 r_0^{QWT} = \frac{B_2}{B_1} R
 \]
 - Transverse acceptance
 \[
 p_t^{QWT} = \frac{eB_1 R}{2}
 \]
- \(L_1 = 0.24 \text{ cm}\): Short solenoid length
- \(B_1 = 0.96 \text{ T}\): Magnetic field over \(L_1\)
- \(R = 3 \text{ cm}\): Accelerator aperture
Un-Polarized mode: Positron Capture

- Reduce the magnetic field in the first solenoid.
- Rotate the transverse phase space \((x, x_p)\) and \((y, y_p)\) at the exit of the QWT.
- Use the same QWT as an energy filter.
- QWT acceptance:
 - Radial acceptance
 \[r_{0}^{QWT} = \frac{B_2}{B_1} R \]
 - Transverse acceptance
 \[p_{t}^{QWT} = \frac{eB_1 R}{2} \]

- \(L_1 = 0.24 \text{ cm}: \) Short solenoid length
- \(B_1 = 0.96 \text{ T}: \) Magnetic field over \(L_1 \)
- \(R = 3 \text{ cm}: \) Accelerator aperture
Momentum collimation

- Periodic Twiss in FODO:
 \[\beta_{x_{in}} = \beta_{x_{out}} \]

- Minimum beam size condition:
 \[\beta_x = \beta_{x_{MIN}} \rightarrow \alpha_x = 0 \]
The longitudinal energy spread $\frac{dp}{p}$ is reduced by accelerating from 22 MeV/c to 123 MeV/c.

The accelerating section is utilized to produce the required energy chirp.

The same compression chicane is employed to effectively reduce bunch length.