Impact of radiative corrections on decays of Higgs bosons in extended Higgs sectors

Masashi Aiko (KEK)

In collaboration with Shinya Kanemura (Osaka University), Mariko Kikuchi (Nihon University), Kodai Sakurai (Warsaw University), Kei Yagyu (Osaka University)

Based on Nucl. Phys. B986 (2023) 116047 [hep-ph: 2207.01032]

International Workshop on Future Linear Colliders (2023/05/18 California, U.S.)

Introduction

Problems in the SM

- Baryon asymmetry of the universe •
- Dark matter •
- Neutrino tiny mass etc.

SM must be extended to solve these problems.

Extended Higgs model

The detail of the Higgs sector is still a mystery.

- One $SU(2)_{I}$ doublet is an assumption in the SM.
 - Additional Higgs fields (singlet, multi-doublets, and higher representations)
- The above problems can be solved. •
 - Electroweak baryogenesis, scalar DM, radiative seesaw mechanism etc.

Determination of the Higgs sector is one of the central interests in high-energy physics

Two Higgs doublet model (2HDM)

- The model with two scalar doublet Φ_1 and Φ_2 with Y = 1/2. $V(\Phi_1, \Phi_2) = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + h.c.)$ $+\frac{1}{2}\lambda_{1}|\Phi_{1}|^{4}+\frac{1}{2}\lambda_{2}|\Phi_{2}|^{4}+\lambda_{3}|\Phi_{1}|^{2}|\Phi_{2}|^{2}+\lambda_{4}|\Phi$
- Softly-broken Z_2 symmetry suppresses flavor-changing neutral currents. - 2HDM is classified into Type-I, II, X and Y.

Scalar paricles

h (SM-like Higgs boson), H, A, H^{\pm}

v (=246 GeV), m_h (=125 Ge Parameters

Higgs couplings $g_{hVV} = s_{\beta-\alpha}g_{hVV}^{SM}$, $g_{hff} = (s_{\beta-\alpha} - \alpha)$

- LHC data indicate $s_{\beta-\alpha} \simeq 1$. ATLAS, Nature 607 (2022) CMS, Nature 607 (2022)

$$\Phi_1^{\dagger} \Phi_2 \Big|^2 + \frac{1}{2} \lambda_5 \Big[(\Phi_1^{\dagger} \Phi_2)^2 + h.c. \Big],$$

$$\Phi_i = \begin{pmatrix} \omega_i^{\pm} \\ \frac{1}{\sqrt{2}}(v_i + h_i + iz_i) \end{pmatrix}$$

Glashow, Weinberg, PRD15 (1977) Paschos, PRD15 (1966) Barger et al. PRD41 (1990), Aoki et al. PRD80 (2009)

eV),
$$\tan\beta$$
, $s_{\beta-\alpha}$, m_H , m_A , $m_{H^{\pm}}$, $M^2 = m_{12}^2/(s_\beta c_\beta)$

$$-c_{\beta-\alpha}\zeta_f)g_{hff}^{SM}$$
 ($\zeta_f = -\tan\beta \text{ or }\cot\beta$)

- Alignment limit : $s_{\beta-\alpha} \rightarrow 1$ (tree-level Higgs couplings take SM-values.) Gunion, Haber, PRD67 (2003)

Decay of the additional Higgs bosons (LO)

Decay patterns

Type-I 2HDM: m_{Φ} =

$$= m_H = m_A = m_{H^{\pm}} = 400 \text{ GeV}, \tan \beta = 10$$

Higgs-to-Higgs decays can be dominant if $s_{\beta-\alpha} \neq 1$

MA, Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu, NPB966 (2021)

Direct search

- Direct searches give lower bounds on m_{Φ} . •
- $H \rightarrow hh, A \rightarrow Zh$ decays exclude wide

parameter region

Indirect search

 If the SM-like Higgs boson couplings deviate from those in the SM, an upper bound on m_{Φ} can be deduced.

The non-alignment scenario can be explored comprehensively.

MA, Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu, NPB966 (2021)

Direct search

- Direct searches give lower bounds on m_{Φ} . •
- $H \rightarrow hh, A \rightarrow Zh$ decays exclude wide

parameter region

Indirect search

 If the SM-like Higgs boson couplings deviate from those in the SM, an upper bound on m_{Φ} can be deduced.

The non-alignment scenario can be explored comprehensively.

MA, Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu, NPB966 (2021)

Direct search

- HL-LHC gives lower bounds on m_{Φ} .
- $H \rightarrow hh, A \rightarrow Zh$ decays exclude wide

parameter region

Indirect search

 If the SM-like Higgs boson couplings deviate from those in the SM, an upper bound on m_{Φ} can be deduced.

The non-alignment scenario can be explored comprehensively.

MA, Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu, NPB966 (2021)

Direct search

- HL-LHC gives lower bounds on m_{Φ} .
- $H \rightarrow hh, A \rightarrow Zh$ decays exclude wide

parameter region

Indirect search

 If the SM-like Higgs boson couplings deviate from those in the SM, an upper bound on m_{Φ} can be deduced.

The non-alignment scenario can be explored comprehensively.

NPB966 (2021)

Need of higher-order calculations

Higgs-to-Higgs decays

Higgs-to-Higgs decays $(H \to hh, A \to Zh, H^{\pm} \to W^{\pm}h)$ are sensitive to $c_{\beta-\alpha}$.

Ex. $c_{\beta-\alpha} = 0.1$ when $s_{\beta-\alpha} = 0.995$

We need to take into account NLO corrections in a nearly alignment case.

H decay : Kanemura, Kikuchi, Yagyu NPB983 (2022) H^{\pm} decay : MA, Kanemura, Sakurai, NPB973 (2021) A decay : MA, Kanemura, Sakurai, NPB986 (2023)

 $\left|\mathcal{M}\right|^2 \simeq \left|\mathcal{M}_{\mathrm{LO}}\right|^2 + 2 \operatorname{Re}(\mathcal{M}_{\mathrm{LO}}\mathcal{M}_{\mathrm{NLO}}^*)$

NLO corrections do not vanish even with $c_{\beta-\alpha} \rightarrow 0$

H-COUP project

H-COUP is a calculation tool composed of a set of Fortran codes to evaluate full one-loop corrections to the Higgs bosons' observables.

SM-like Higgs boson

ver. 1: Kanemura, Kikuchi, Sakurai, Yagyu, CPC233 (2018) ver. 2: Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu CPC257 (2020)

Two and three-body decays of h(125) with NLO EW and higher-order QCD (ver.2)

Additional Higgs bosons

MA, Kanemura, Kikuchi, Sakurai, Yagyu in preparation

- Improved on-shell scheme
- UV divergences are renormalized in the on-shell scheme.
- Gauge dependencies are removed by the pinch technique.
- IR divergences are removed by adding real photon emission. Denner 0709.1075

2HDM Inert doublet model Higgs singlet model

Two-body decays of additional Higgs bosons with NLO EW and higher-order QCD (ver.3)

Kanemura, Kikuchi, Sakurai, Yagyu, PRD96 (2017) Krause et al. JHEP09 (2016), Denner, et al. JHEP09 (2016)

> Papavassiliou, PRD50, 5958 Goodsell, Liebler, Staub, EPJC77 (2017)

c.f. other public tools 2HDECAY; Krause et al. CPC246 (2020), Prophecy4f; Denner et al. CPC254 (2020)

H-COUP ver.3

Inert doublet model (IDM) H-COUP ver.2 Higgs singlet model (HSM)			Our works	Our works A decay : MA, Kanemura, Sakural, NPB A decay : MA, Kanemura, Sakural, NPB			
125GeV Higgs		CP-even		CP-odd		Charged	
$h \to ff$	~	$H \to ff$		$A \to ff$		$H^{\pm} \to ff'$	
$h \rightarrow VV^*$	V	$H \rightarrow VV$		$A \rightarrow Z h/H$	/	$H^{\pm} \to W^{\pm} h/H$	
$h \rightarrow \gamma \gamma / Z \gamma / gg$	V	$H \rightarrow hh$		$A \to W^{\pm} H^{\mp}$		$H^{\pm} \to W^{\pm} A$	
		$H \rightarrow AA/H^+H^-$		$A \rightarrow VV$		$H^{\pm} \rightarrow W^{\pm} Z/\gamma$	
		$H \rightarrow ZA/W^{\pm}H^{\mp}$					

Additional Higgs decays in IDM and HSM will be also included.

2HDM

H decay : Kanemura, Kikuchi, Yagyu NPB983 (2022) H[±] decay : MA, Kanemura, Sakurai, NPB973 (2021)

We focus on the EW corrections to $A \rightarrow Zh$

H-COUP ver.3

2HDM

Inert doublet model (IDM) H-COUP ver.2 Higgs singlet model (HSM)			Image: A decay : MA, Kanemura, Sakural, NPBS Our works A decay : MA, Kanemura, Sakural, NPBS A decay : MA, Kanemura, Sakural, NPBS				
125GeV Higgs		CP-even		CP-odd		Charged	
$h \to ff$	~	$H \to ff$		$A \to ff$		$H^{\pm} \to f f'$	
$h \rightarrow VV^*$	/	$H \rightarrow VV$		$A \rightarrow Z h H$	•	$H^{\pm} \rightarrow W^{\pm} h/H$	
$h \rightarrow \gamma \gamma / Z \gamma / g g$	~	$H \rightarrow hh$		$A \to W^{\pm} H^{\mp}$	•	$H^{\pm} \to W^{\pm} A$	/
		$H \rightarrow AA/H^+H^-$	/	$A \rightarrow VV$	•	$H^{\pm} \rightarrow W^{\pm} Z/\gamma$	/
	-	$H \to ZA/W^{\pm}H^{\mp}$	•				

Additional Higgs decays in IDM and HSM will be also included.

We focus on the EW corrections to $A \rightarrow Zh$

H decay : Kanemura, Kikuchi, Yagyu NPB983 (2022) H[±] decay : MA, Kanemura, Sakurai, NPB973 (2021)

Correlation between BR($A \rightarrow Zh$) and $\Delta R(h \rightarrow ZZ^*)$ is significantly changed.

$BR(A \rightarrow Zh) \vee S \Delta R(h \rightarrow ZZ^*)$ at NLO

MA, Kanemura, Sakurai, NPB986 (2023)

77*	4

Motivation

The phenomenology of the additional Higgs bosons is drastically changed

New points

- Decays of additional Higgs bosons are comprehensively analyzed.
- the higher-order corrections.

What we found

- Branching ratios of $A \rightarrow Zh$ receive $\mathcal{O}(10)$ % corrections if $\tan \beta \simeq 2$.

NLO corrections are important for direct searches of the additional Higgs bosons.

whether $s_{\beta-\alpha} = 1$ or not. \implies What is the impact of NLO corrections? H-COUP ver.3

• Correlation between the decay branching ratios and $\Delta R(h \rightarrow ZZ^*)$ are studied including

• Correlation between BR($A \rightarrow Zh$) and $\Delta R(h \rightarrow ZZ^*)$ is significantly changed from LO.

Behavior of NLO Electroweak correction

 $A \rightarrow Zh$

- threshold correction at $m_A \simeq 2m_t$
- When m_{Φ} is large, δZ_A and $\delta \beta$ give $\mathcal{O}(\lambda_{SS'S''}^2)$

• The sign of $\Delta_{EW}(A \rightarrow Zh)$ depends on that of $c_{\beta-\alpha}$.

MA, Kanemura, Sakurai, NPB986 (2023)

Behavior of NLO Electroweak correction

 $A \rightarrow Zh$

- threshold correction at $m_A \simeq 2m_t$
- When m_{Φ} is large, δZ_A and $\delta \beta$ give $\mathcal{O}(\lambda_{SS'S''}^2)$

• The sign of $\Delta_{EW}(A \to Zh)$ depends on that of $c_{\beta-\alpha}$.

MA, Kanemura, Sakurai, NPB986 (2023)

$BR(A \rightarrow Zh) \vee S \Delta R(h \rightarrow ZZ^*)$ at NLO

MA, Kanemura, Sakurai, NPB986 (2023)

LO: $\Gamma(A \to Zh) \propto c_{\beta-\alpha}^2$, $\Delta R(h \to ZZ^*) \propto c_{\beta-\alpha}^2$, $\lambda_{\phi\phi'\phi''} \propto (m_{\Phi}^2 - M^2)/v^2$

 $\Delta R(h \to ZZ^*) = \frac{\Gamma_{2\text{HDM}}^{h \to ZZ^*}}{\Gamma_{\text{SM}}^{h \to ZZ^*}} - 1$

