Isosinglet vectorlike leptons at e^+e^- colliders

Prudhvi N. Bhattiprolu prudhvib@umich.edu

🔀 University of Michigan

SLAC May 18, 2023

Based on ongoing work with Stephen P. Martin and Aaron Pierce, arXiv:hep-ph/230x.xxxxx

- Hadron colliders: best discovery reach
- ▶ Lepton colliders: precision studies and indirect searches

This may not be the case for weakly interacting particles

Hadron colliders: best discovery reach

Lepton colliders: precision studies and indirect searches
 This may not be the case for weakly interacting particles

Consider the example of $SU(2)_L$ -singlet vectorlike leptons τ' :

$$au_L', au_R'^{\dagger} ~\sim~ ({f 1}, {f 1}, -1) ~+~ ({f 1}, {f 1}, +1)$$

which should be contrasted with the **chiral** τ leptons in the SM:

$$au_L, au_R^{\dagger} \sim (\mathbf{1}, \mathbf{2}, -1/2) + (\mathbf{1}, \mathbf{1}, +1)$$

Hadron colliders: best discovery reach

Lepton colliders: precision studies and indirect searches This may not be the case for weakly interacting particles

Consider the example of $SU(2)_L$ -singlet vectorlike leptons τ' :

$$au_L', au_R'^{\dagger} ~\sim~ ({f 1}, {f 1}, -1) ~+~ ({f 1}, {f 1}, +1)$$

which should be contrasted with the **chiral** τ leptons in the SM:

$$au_L, au_R^{\dagger} \sim (\mathbf{1}, \mathbf{2}, -1/2) + (\mathbf{1}, \mathbf{1}, +1)$$

Motivations:

- Many new physics models require vectorlike leptons
- New fermions must be necessarily vectorlike
- Decouple from flavor and EW precision data for higher masses
- Automatically anomaly-free

Assume tiny mass mixing of τ' and τ :

$$\mathcal{M} = \begin{pmatrix} y_{\tau}v & 0\\ \epsilon v & M \end{pmatrix}$$

Limited discovery/exclusion reach for τ^\prime at the

- LHC [Kumar, Martin 1510.03456]
- Future pp colliders [PNB, Martin 1905.00498]

Limited discovery/exclusion reach for τ^\prime at the

- LHC [Kumar, Martin 1510.03456]
- Future pp colliders [PNB, Martin 1905.00498]

Current 95% CL exclusions:

- $M_{\tau'} < 101.2 \text{ GeV} [\text{LEP 0107015}]$
- ▶ 125 GeV $< M_{\tau'} < 150$ GeV [CMS 2202.08676]

- ▶ Pair-production mode: $e^+e^- \rightarrow \gamma^*, Z^* \rightarrow \tau'^+\tau'^-$
- ▶ For $M_{ au'}$ much smaller than \sqrt{s} , $\sigma \sim 1/s$ (independent of $M_{ au'}$)
- Ignoring ISR + beamstrahlung (for now)

Isosinglet VLL at e^+e^- colliders

 $^{\dagger}We$ used $\rm WHIZARD + CIRCE2$ in order to account for ISR + beam spectra $^{\ddagger}For$ detector simulation, we used delphes_card_ILD.tcl based on [ILC Design Report 1306.6329]

Isosinglet VLL at e^+e^- colliders

Peak reconstruction

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, WWh, WWZ, ZZh, ZZZ, ...

 $^{\dagger}We$ used $\rm WHIZARD + CIRCE2$ in order to account for ISR + beam spectra $^{\ddagger}For$ detector simulation, we used delphes_card_ILD.tcl based on [ILC Design Report 1306.6329]

Isosinglet VLL at e^+e^- colliders

Peak reconstruction

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, WWh, WWZ, ZZh, ZZZ, ...

Signal and background events generated at leading order by: $FeynRules \rightarrow MadGraph5^{\dagger} \rightarrow Pythia8 \rightarrow Delphes^{\ddagger}$

 $\label{eq:higher} \ensuremath{^{\dagger}We}\ used\ \mathrm{WHIZARD}\ +\ \mathrm{CIRCE2}\ in\ order\ to\ account\ for\ ISR\ +\ beam\ spectra \\ \ensuremath{^{\dagger}For}\ detector\ simulation,\ we\ used\ delphes_card_ILD.tcl\ based\ on\ [ILC\ Design\ Report\ 1306.6329]$

Isosinglet VLL at e^+e^- colliders

Peak reconstruction

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, WWh, WWZ, ZZh, ZZZ, ...

Signal and background events generated at leading order by: FEYNRULES \rightarrow MADGRAPH5[†] \rightarrow PYTHIA8 \rightarrow DELPHES[‡]

Goal: Reconstructing the mass peaks of τ' for various $M_{\tau'}$ in various signal regions

Isosinglet VLL at e^+e^- colliders

 $[\]label{eq:higher} \ensuremath{^{t}We}\ used\ \ensuremath{W\textsc{higher}\ Whizard\ +\ CIRCE2\ in\ order\ to\ account\ for\ ISR\ +\ beam\ spectra \\ \ensuremath{^{t}For\ detector\ simulation,\ we\ used\ \ensuremath{delphis}\ account\ for\ ISR\ +\ beam\ spectra \\ \ensuremath{^{t}For\ detector\ simulation,\ we\ used\ \ensuremath{delphis}\ account\ for\ ISR\ +\ beam\ spectra \\ \ensuremath{^{t}ILC\ Design\ Report\ 1306.6329} \ensuremath{)} \ensuremath{}^{t}$

Backgrounds: $t\overline{t}$, $t\overline{t}Z$, $t\overline{t}h$, WWh, WWZ, ZZh, ZZZ, ...

Signal and background events generated at leading order by: FEYNRULES \rightarrow MADGRAPH5[†] \rightarrow PYTHIA8 \rightarrow DELPHES[‡]

Goal: Reconstructing the mass peaks of τ' for various $M_{\tau'}$ in various signal regions

Consider 1 TeV ILC/ C^3 with unpolarized beams for demonstration (**Preliminary**)

[†]We used WHIZARD + CIRCE2 in order to account for ISR + beam spectra [‡]For detector simulation, we used delphes_card_ILD.tcl based on [ILC Design Report 1306.6329]

Isosinglet VLL at e^+e^- colliders

Peak reconstruction

Signal regions with exactly 2τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-/jj$ and h from bb

- ▶ 4 e/µ + 2 T
- ► 4 *j* + 2 *τ*
- ▶ 2 e/µ + 2 j + 2 τ
- ► 2 e/µ + 2 b + 2 τ
- ► 2 *j* + 2 *b* + 2 *τ*
- ▶ 4 b + 2 T

[†]For candidate Z/h bosons reconstructed from (b) jets, rescale the 4-momenta of each (b) jet by a common factor such that their invariant mass is exactly $M_{Z/h}$

Signal regions with exactly 2τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-/jj$ and h from bb

$$\left.\begin{array}{c} 4 \ e/\mu + 2 \ \tau \\ 4 \ j + 2 \ \tau \\ 2 \ e/\mu + 2 \ j + 2 \ \tau \\ 2 \ e/\mu + 2 \ b + 2 \ \tau \\ 2 \ j + 2 \ b + 2 \ \tau \\ 4 \ b + 2 \ \tau \end{array}\right\} ZZ\tau\tau$$

Isosinglet VLL at e^+e^- colliders

Peak reconstruction

[†]For candidate Z/h bosons reconstructed from (b) jets, rescale the 4-momenta of each (b) jet by a common factor such that their invariant mass is exactly $M_{Z/h}$

Signal regions with exactly 2τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-/jj$ and h from bb

 $\begin{array}{c} \bullet \ 4 \ e/\mu + 2 \ \tau \\ \bullet \ 4 \ j + 2 \ \tau \\ \bullet \ 2 \ e/\mu + 2 \ j + 2 \ \tau \\ \bullet \ 2 \ e/\mu + 2 \ b + 2 \ \tau \\ \bullet \ 2 \ j + 2 \ b + 2 \ \tau \\ \bullet \ 4 \ b + 2 \ \tau \end{array} \right\} ZZ\tau\tau$

Strategy:

- Require both taus τ_1, τ_2 have opposite-signs
- Reconstruct all candidate Z/h bosons, B_1 , B_2 , ...[†]
- Find various pairings that reconstruct τ' pair:

$$au_1' = (au_1, B_k)$$
 and $au_2' = (au_2, B_\ell)$

such that the candidate bosons B_k , B_ℓ are unique

[†]For candidate Z/h bosons reconstructed from (b) jets, rescale the 4-momenta of each (b) jet by a common factor such that their invariant mass is exactly $M_{Z/h}$

Isosinglet VLL at e^+e^- colliders

• Use collinear approximation for ν_1 from τ_1 decay:

$$E_{
u_1} = |ec{p}_{
u_1}|, \quad ec{p}_{
u_1} = (r-1)ec{p}_{
u_1}$$

Here, τ_1 is taken to be the τ with highest energy[‡]

[‡]Except in the events with exactly one Z that decays leptonically, in which case τ_1 in each pairing is relabeled to be the τ that is being paired with the leptonically decaying Z.

• Use collinear approximation for ν_1 from τ_1 decay:

$$E_{
u_1} = |ec{p}_{
u_1}|, \quad ec{p}_{
u_1} = (r-1)ec{p}_{ au_1}$$

Here, τ_1 is taken to be the τ with highest energy[‡] Use total missing $\not E$ (inferred from \sqrt{s}) to obtain

$$E_{
u_2} = E - E_{
u_1}, \quad \vec{p}_{
u_2} = rac{E_{
u_2}}{|\vec{p}_{
u_2}|} \ \vec{p}_{
u_2}$$

Isosinglet VLL at e^+e^- colliders

[‡]Except in the events with exactly one Z that decays leptonically, in which case τ_1 in each pairing is relabeled to be the τ that is being paired with the leptonically decaying Z.

• Use collinear approximation for ν_1 from τ_1 decay:

$${\it E}_{
u_1} = |ec{
ho}_{
u_1}|, \quad ec{
ho}_{
u_1} = (r-1)ec{
ho}_{ au_1}$$

Here, τ_1 is taken to be the τ with highest energy[‡] Use total missing \not{E} (inferred from \sqrt{s}) to obtain

$${f E}_{
u_2} = {m /} {f E} - {f E}_{
u_1}, \quad {m ec p}_{
u_2} = rac{{m E}_{
u_2}}{|{m
ho}_{
u_2}|} \; {m
ho}_{
u_2}$$

For each pairing, (τ_1, B_k) and (τ_2, B_ℓ) , solve for r by imposing:

$$\left(p_{B_k}^{\mu} + p_{\tau_1}^{\mu} + p_{\nu_1}^{\mu}\right)^2 = \left(p_{B_\ell}^{\mu} + p_{\tau_2}^{\mu} + p_{\tau_1}^{\mu} - p_{\nu_1}^{\mu}\right)^2$$

and compute $ec{p}_{\mathsf{total}} = ec{p}_{\mathsf{visible}} + ec{p}_{
u_1} + ec{p}_{
u_2}$

Isosinglet VLL at e^+e^- colliders

[‡]Except in the events with exactly one Z that decays leptonically, in which case τ_1 in each pairing is relabeled to be the τ that is being paired with the leptonically decaying Z.

▶ Pick a pairing that minimizes $|\vec{p}_{total}|$ and plot invariant mass of τ_1 , B_k and the reconstructed ν_1 (example below for $M_{\tau'} = 200$ GeV)

▶ Pick a pairing that minimizes $|\vec{p}_{total}|$ and plot invariant mass of τ_1 , B_k and the reconstructed ν_1 (example below for $M_{\tau'} = 200$ GeV)

Might lose some events where ν not actually collinear with τ
 Collinear approximation holds better for larger M_{τ'} (next slide)

Isosinglet VLL at e^+e^- colliders

Backgrounds seem very small (at least with processes included so far)

Similar peak reconstructions also possible in all the other signal regions with 2τ (not shown here)

Signal regions with exactly 1τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-$, h from bb, and W from jj

Signal regions with exactly 1τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-$, h from bb, and W from jj

$$\begin{array}{l} \bullet \ 2 \ e/mu + 2 \ j + 1 \ \tau \\ \bullet \ 2 \ j + 2 \ b + 1 \ \tau \end{array} \} ZW\tau\nu_{\tau} \\ \end{array}$$

Signal regions with exactly 1τ : Reconstruct Z from $e^+e^-/\mu^+\mu^-$, h from bb, and W from jj

•
$$2 e/mu + 2 j + 1 \tau$$
 } $ZW\tau\nu_{\tau}$
• $2 j + 2 b + 1 \tau$ } $hW\tau\nu_{\tau}$

Strategy:

- Similar to the signal regions with 2τ , except there is only one tau
- No ambiguity in finding the correct pairing: τ (and its associated neutrino ν) is always paired with Z/h

- Backgrounds slightly larger than SRs with 2\tau but still very sub-dominant
- Since $BR(\tau' \rightarrow W \nu_{\tau})$ is the largest, we have far better statistics in these SRs

For more realistic peak reconstructions, one should also account for ISR and beamstrahlung

▶ Right: Since $\hat{\sigma} \sim 1/\hat{s}$ for $s \gg M_{\tau'}^2$, slightly enhanced cross sections for small $M_{\tau'}$

Isosinglet VLL at e^+e^- colliders

Peak reconstruction with ISR and beamstrahlung: Consider, e.g., $4e/\mu + 2\tau$ signal region

Peak reconstruction with ISR and beamstrahlung: Consider, e.g., $4e/\mu + 2\tau$ signal region

 \blacktriangleright Distributions more spread out but still peak $\sim M_{ au'}$

Conclusions:

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed

Conclusions:

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed
- Heights of the mass peaks in various signal regions can in turn give a handle on the branching ratios

Conclusions:

- Considered an example of weak isosinget vectorlike leptons that are well-motivated
- Demonstrated that its mass peaks can be reconstructed
- Heights of the mass peaks in various signal regions can in turn give a handle on the branching ratios

 e^+e^- collider may act as a discovery machine for particles with only electroweak interactions that have limited reach at a hadron collider!