

Exploring hidden sectors at future e^+e^- colliders with two angular particle correlations

Emanuela Musumeci (IFIC, Valencia)

R. Pérez-Ramos, A. Irles, I. Corredoira, V. Mitsou, M.A. Sanchis-Lozano

SLAC National Accelerator Laboratory, Menlo Park (USA)

18/05/2023

- Two particle angular correlations
- Hidden Valley Phenomenology
- Preliminary Results: Signal vs Background
- Summary

> Powerful method to study the underlying mechanisms of particle production

> Uncover possible collective effects resulting from the high particle densities

HIDDEN VALLEY PHENOMENOLOGY

The term *Hidden Valley* refers to a wide <u>class of models</u>

8

HIDDEN VALLEY PHENOMENOLOGY

The term *Hidden Valley* refers to a wide <u>class of models</u>

HIDDEN VALLEY PHENOMENOLOGY

QCD-like scenario

Communicator: F_V

- mirror partner of the SM charged quarks and leptons
- Charged under G_{SM} and G_V
- Pair-produced
- (Prompt) decays: $F_V \to fq_V \longrightarrow$ hadrons

$$P Q_V \rightarrow qq_V$$

 $\Rightarrow E_V \rightarrow eq_V$

JHEP 1009:105,2010 L Carloni, T Sjöstrand

TOOLS:

- Pythia8
- FastJet
- ROOT

SIGNAL

 $\sigma_{HV} = 0.12 \text{ pb}$

 $e^+e^- \rightarrow \gamma^*/Z^0 \rightarrow D_V \bar{D}_V \rightarrow \text{hadrons}$

 $m_{D_V} = 125 \text{ GeV},$ $m_{q_V} = 100 \text{ GeV},$ $\alpha_V = 0.1$

 $\sqrt{s} = 250 \text{ GeV}$

BACKGROUND

 $e^+e^- \rightarrow \gamma^*/Z^0 \rightarrow q\bar{q} \rightarrow hadrons$

11

Yield

$$Y(\Delta\phi) = \frac{\int_{1.6 \le |\Delta y| \le 3.0} S(\Delta\phi, \Delta y) d\Delta y}{\int_{1.6 \le |\Delta y| \le 3.0} B(\Delta\phi, \Delta y) d\Delta y}$$

Before cuts

After cuts

Emanuela Musumeci |

SUMMARY

✤ The analysis of the long-range angular particle correlations can provide valuable insights into the initial state of matter

We investigate the observability of hidden sectors at future

 e^+e^- colliders with two angular particle correlations

Our preliminary results indicate that the study of angular correlations in multiparticle production *might be useful to uncover* the existence of New Physics

Next steps:

- Including detector effects (in progress)
- Exploring higher energy configurations ($\sqrt{s} = 0.5 \rightarrow 1 \text{ TeV}$)

Thanks for your attention!

BACKUP SLIDES

Cuts applied

- $\sigma_{HV} = 0.12 \text{ pb}$
- $\sigma_{bckg} = 12.2 \text{ pb}$

	HV Signal (Eff. %)	Background (Eff. %)	S/B	$S/\sqrt{B+S}$		
$\sqrt{s} = 250, \ \mathcal{L} = 2 \ ab^{-1} \ \text{GeV}$						
$200 \le m_{jj} \le 230$	83.74	18.11	0.04560	97.46		
$200 \le m_{jj} \le 240$	87.21	40.43	0.02314	68.79		
$200 \le m_{jj} \le 250$	100	79.47	0.01351	56.54		

	HV Signal	Background	\mathbf{C} / \mathbf{D}	$S/\sqrt{B+S}$			
	(Eff. %)	(Eff. %)	S/D				
$\sqrt{s}=250~GeV,~\mathcal{L}=2~ab^{-1}$							
T < 0.95	94.97	42.11	0.10285	133.37			
T<0.90	79.22	18.14	0.19918	162.68			
T<0.85	60.64	9.34	0.2960	166.81			
T<0.80	41.80	4.74	0.4022	155.18			
T<0.75	23.51	2.04	0.5256	127.55			
T<0.70	7.9	0.73	0.4935	72.41			
T<0.65	0.48	0.13	0.1684	11.78			

Emanuela Musumeci |

 $-\iota$

$$\sqrt{s} = 0.5 \rightarrow 1 \text{ TeV}$$

SIGNAL

★ $e^+e^- \rightarrow \gamma^*/Z^0 \rightarrow T_V \bar{T}_V \rightarrow$ hadrons

BACKGROUND

