Probing non-perturbative QED and new physics with a LUXE-type experiment at the ILC

Adrián Irles* on behalf the LUXE Collaboration *AITANA group at IFIC – CSIC/UV

MATTER AND TECHNOLOGY

Financiado por la Unión Europea NextGenerationEU

Strong Field QED and the LUXE experiment

QED in strong fields: SFQED

- For large values of EM field € → the Schwinger critical field is surpassed and the vacuum becomes unstable to pair production
 - during the fluctuation, $E>2m_{e}$ is supplied

$$\mathcal{E}_{crit} = \frac{m_e^2 c^3}{\hbar e} = 1.32 \times 10^{18} V/m.$$

Perturbative QED breaks down in the presence of strong fields

- Such fields have not been probed in laboratories although they are expected to exist:
- On surface of neutron stars
- In bunches of **future linear e+e- colliders**.
- Can be reached by colliding high intensity laser beams with a high-energy electron beam
 - Laser field ~ 10¹⁴ V/m (current technology)
 - Extra 10⁴ has to be given by e- boost

LUXE: Laser Und XFEL Experiment

LUXE: Laser Und XFEL Experiment

- Experiment based at DESY-XFEL
- Strong EM field:
 - 30-350TW optical laser
 - 16.5 GeV e⁻ beam (from EU.XFEL)
- Ambitious time-scale
 - CDR published,
 - TDR to appear during 2023
 - start data taking in **2026**

First experiment to try this E144 @ SLAC in 1990s. Nowadays experiments : SLAC-E320 (US), Astra Gemini (UK), ELI-NP (RO)

SFQED at LUXE

adrian.irles@ific.uv.es

Non-linear Breit-Wheeler (photons from gamma beam and from Compton production)

SFQED at LUXE: non-linear Breit-Wheeler

Positron rate production between $10^{-5} - 10^7 e^+$ /bunch

ξ> 1

Sum of all orders of ξ resulting in a non-linear non-perturbative BW process

Non perturbative Breit-Wheeler has no classical equivalent

Detector challenges (few ILC-like cases)

adrian.irles@ific.uv.es

CWS

2

Axions parameters landscape

- Axions appears in many BSM scenarios
- Solution to strong CP problem
 - (breaking Peccei–Quinn (PQ) symmetry) → Goldstone boson (non-zero mass)
- Natural candidate for Dark Matter

WS2023 adrian.irles@ific.uv.es

LUXE-NPOD Can explore uncharted territory

Adrian.irles@ific.uv.es

adrian.irles@ific.uv.es

- Absolute rates depends on:
 - Geometrical acceptance

$$\mathcal{L}_{eff} = N_{e-inBX} N_{BX} \frac{9\rho_N X_0}{7A_N m_0}$$

• Photons on target

$$\mathcal{L}_{eff} = N_{e-inBX} N_{BX} \frac{\sigma_{PNN0}}{7A_N m_0}$$

- Projections for 1 year data taking (10⁷ s)
 - expected background free
 - Optimization for different solid dump design
- 95%CL competitive with FASER2 (>2029) and NA62
- LUXE phase-1 can reach the naturalness bound

Proposed and future experiments

LUXE at Higgs Factories

LUXE at Higg Factories

3

Prospects of a LUXE at Higgs factories

▶ Use ILC spent beams or FCC-ee beam dumps (its booster)

• and an optical laser as in LUXE

adrian.irles@ific.uv.es

Prospects of a LUXE at Higgs factories

 $E_e = 16.5 \text{ GeV}$ E_e = 125 GeV E_ = 120 GeV E₀ = 120 GeV $N_e = 1.5 \times 10^9$ $N_{BX} = 10^7$ $N_{BX} = 6.6 \times 10^{10}$ $N_{e} = 1.8 \times 10^{11}$ $N_{a} = 0.5 \times 10^{10}$ $|N_{BX} = 6.6 \times 10^{10}|$ $N_{BX} = 1.1 \times 10^5$ $N_{BX} = 3.3 \times 10^{8}$ Eu.XFEL ILC 250 FCC-ee FCC-ee booster Signal yield: × 8.8 10⁴ ×1.1 10³ × 1.3

- Assumptions:
 - 10⁷ seconds of data-taking time per year
 - Use ILC spent beams (broader energy spectrum is not problematic)
 - Dump of FCC-ee beams 3 times per day

adrian.irles@ific.uv.es

• Dedicated FCC-ee booster cycles for a beam dump every 10 seconds

* tables compiled by F. Meloni with input from J. List and F. Zimmermann

More info in J. List's <u>talk</u>

Prospects of a LUXE at ILC

- Harder photon spectrum
 - Average **E y ~ 40 GeV**
 - Lorentz boost > 10 times EU.XFEL
- ALPs production
 - No large change in production cross-section
 - Significantly larger ALP lorentz boost →
 - Access to larger masses!

adrian.irles@ific.uv.es

- background-free scenario
 - Double dump depth
- Keep all parameters as LUXE-phase-0, except for the beam energy
 - Only primakoff process (secondary production)
- Sizeable gain in sensitivity

Summary

LUXE is a novel experiment for non-perturbative QED

- Data taking expected to start in 2026
- Designed to study collisions between 16.5 GeV electrons or photons and High Power optical Laser beam (40 and 350 TW, phase-0/1)
- > Direct searches of **BSM** physics thanks to the high intensity photon fluxe (of few GeV)
 - LUXE NPOD will study uncharted ALPs parameter space
- > A dedicated experiment at a future Higgs factory could offer major gains
 - Higher beam energy
 - Much higher number of bunches

LCWS2023 adrian.irles@ific.uv.es

- Collaboration webpage: <u>https://luxe.desy.de/</u>
- LUXE CDR
- Collaboration <u>talks and documents</u>
- A LUXE review (A. Levy, DIS2022)
- **BSM direct searches (ALPs)** with an optical dump at LUXE. <u>The LUXE-NPOD</u>

Interested? Join us !

L.

back-up

adrian.irles@ific.uv.es

SFQED at LUXE

Charge field coupling \rightarrow work done by the EM field over electron Compton wavelenght in units of EM field

~ number of laser photons interacting with the electron beam at a given time

Laser photon density ~ ξ^2

	Theory Parameter	Definition	Range acce phase-0	essed in LUXE phase-1	
ξ	Classical non-linearity parameter	$\xi = rac{m_e}{\omega_L} rac{\mathscr{E}_{ m L}}{\mathscr{E}_{ m cr}}$	≤ 6	≤ 19	
η_i	Energy parameter	$\eta_i = \frac{\omega_L \varepsilon_i}{m_e^2} (1 + \beta \cos \theta)$	$\eta_i \leq 0.2$		
Xi	Quantum non-linearity parameter	$\chi_i = \frac{\varepsilon_i}{m_e} \frac{\mathscr{E}_{\rm L}}{\mathscr{E}_{\rm cr}} (1 + \beta \cos \theta)$	≤ 1	≤ 3	

How much the QED deviates from the classical limit

SFQED at LUXE: non-linear Compton Scattering

ξ< 1

The probability to produce one Compton photon is proportional to the density

Still the electron can collide with n laser photons (non-linear compton). The process is still perturbative if $\xi < 1$

ξ> 1

There are no more leading order processes and we are require to resum all higher order contributions in $\boldsymbol{\xi}$

The non-perturbative resulting expression can be expressed as an effective larger electron mass:

$$m_e(eff) = m_e \sqrt{1+\xi^2}$$

28

SFQED at LUXE: non-linear Breit-Wheeler

ξ< 1	Still the photon can collide with n* laser	$\xi > 1$ Sum of all orders of ξ resulting in a
One photon colliding with one laser photon (linear)	photons (non-linear BW). The process is still perturbative if $\xi < 1$	non-linear non-perturbative BW process

Detector challenges

- Vast range of multiplicities of signal and backgrounds per beam bunch depending on the mode of operation
 - Physics-driven detector technologies at each location

SFQED at LUXE: non-linear Compton Scattering

Electron side (electron-laser mode)

Very large rates of electrons (10°)

• Measurement of the non linear Compton spectrum

Scintillator screen

- Used by the AWAKE collaboration at CERN
- Camera takes pictures of the scintillation light. Resolution ~ 500 μm.
- Signal/Background ~100 & Radiation hard (100 MGy)

Cherenkov gas detector

- Ar gas developed for ILC polarimeter
- Low refractive index gas helps to reduce light yield (Cherenkov threshold 20 MeV)
- Signal/background>1000

adrian.irles@ific.uv.es

Electron side (electron-laser mode)

Very large rates of electrons (10°)

• Measurement of the non linear Compton spectrum

Scintillator screen

- Used by the AWAKE collaboration at CERN
- Camera takes pictures of the scintillation light. Resolution ~ 500 μm.
- Signal/Background ~100 & Radiation hard (100 MGy)

Cherenkov gas detector

- Ar gas developed for ILC polarimeter
- Low refractive index gas helps to reduce light yield (Cherenkov threshold 20 MeV)
- Signal/background>1000

adrian.irles@ific.uv.es

LUXE detectors test beam setup photo. 1 - collimator, 2 - cameras, 3 -Cherenkov detector straws, 4 - scintillator screen, 5 lead glass

Positron side (electron-laser mode)

- Tracker based on ALPIDE sensors (developed by ALICE for phase 1 upgrade)
 - 5um spatial resolution
- Multilayer high granular calorimeters based on linear collider prototypes (FCAL and SiWECAL-CALICE)
 - $20X_0$, 5.5x5.5 mm² sensors (silicon and GaAs under study)
 - Ultra compact to ensure minimal Molière Radius of about R_M~3.5 mm
 - 1 mm between tungsten planes
- Dedicated algorithms for high multiplicity events

LUXE in SFQED parameter space

- E144: SLAC experiment in 1990's, using 46.6 GeV electron beam [Bamber et al. (SLAC 144) '99]
 → reached χ ≤ 0.25, ξ<0.4, observed e⁻ + nγ_L → e⁻e⁺e⁻ process
 - \rightarrow observed start of the ξ^{2n} power law
- LUXE: good chance to be first to enter ξ>1 and χ>1 regime!
 directly study collisions between LASER and real GeV photons

LUXE NPOD: Detector requirements

- Good energy and spatial resolution
 - Able to separate photon showers and reconstruct the originating vertex
 - Two photon system invariant mass reconstruction
- Background rejection:
 - Photon neutron discrimination
 - Timing <0.1 ns

Detector proposal/design is in progress

LUXE and LHC light-by-light scattering

- LHC: photon-photon interaction in ultra-peropherial heavy-ion collissions (UPC)
- ▶ UPD: fields above the Schwinger limit can be reached in the lab
 - Main difference to LUXE: in UPC, EM fiel is extremely short-lived (not travelling macroscopics distances)
 - This regime is still covered by linear perturbative QED

