

International Workshop on Future Linear Colliders

MEASUREMENT OF THE CPV HIGGS MIXING ANGLE IN ZZ-FUSION AT 1 TEV ILC

N. Vukasinovic, I. Bozovic, G. Kacarevic VINCA Institute of Nuclear Sciences, Belgrade, Serbia

> SWANA & LCWS 2023 May 2023

OPENING QUESTIONS

- 1. Could 125 GeV Higgs mass eigenstate be a CPV mixture of CP-odd and CP-even states of the extended Higgs sector via mixing angle Ψ_{CP} ?
- 2. If so, with what precision can this effect be measured at ILC (1 TeV e^+e^- linear collider)?
- 3. What is the interpretation of measurement sensitivity in the context of Snowmass CPV White paper [arXiv:2205.07715v3]?

Common framework is defined in the Snowmass CPV White paper: Benchmark parameter quantifying contributions from CP-odd and CP-even amplitudes;

- Assuming $\leq 10\%$ admixture of CP-odd state, sensitivity target on f_{CP} is set from theory;
- Common interpretation for LHC/HL-LHC, EFT and CP-sensitive measurements; $f_{CP} \sim sin^2(\Delta \Psi_{CP})$

Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000	$1,\!300$	125	125	3,000	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	30,000	250	350	500	1,000	1,000	250	20	1,000	f_{CP}
HZZ/HWW	$4.0 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-5}$	$2.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-3}$	$3.0 \cdot 10^{-6}$	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
$H\gamma\gamma$		0.50	\checkmark				EFT M2	_	0.06			$< 10^{-2}$
$HZ\gamma$	_	~ 1	\checkmark	_	_	_	~ 1	_	_	_	_	$< 10^{-2}$
Hgg	0.12	0.011	\checkmark	_	_	_	_				_	$< 10^{-2}$
$Ht\bar{t}$	0.24	0.05	\checkmark	_	_	0.29	0.08	\checkmark		—	\checkmark	$< 10^{-2}$
$H \tau \tau$	0.07	0.008	\checkmark	0.01	0.01	0.02	0.06		\checkmark	\checkmark	\checkmark	$< 10^{-2}$
$H\mu\mu$							_			\checkmark		$< 10^{-2}$

STATE OF THE ART (68% CL, pure scalar)

[arXiv:2205.07715v3]

3

Collider		pp	pp	pp	e^+e^-	e^+e	- 6	e^+e^-	e^+e	$-e^-p$	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target	$\Delta \Psi_{CP}$:
E (GeV)	1	4,000	14,000	100,000	250	35(0	500	1,00	0 1,300	$0 \ 125$	125	3,000	(theory)	
\mathcal{L} (fb ⁻¹)		300	3,000	30,000	250	35(0	500	1,00	0 1,00	0 250	20	1,000	f _{CP}	
HZZ/HW	W 4.0	0.10^{-5}	$2.5 \cdot 10^{-6}$	\checkmark	$3.9 \cdot 10^{-3}$	⁵ 2.9·10	0^{-5} 1.3	3·10 [−] (3.0.10	$)^{-6}$ \checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$	<4 mrad
$H\gamma\gamma$			0.50	\checkmark	_					_	0.06	; —	_	$< 10^{-2}$	<u>_</u> + midd
$HZ\gamma$			~ 1	\checkmark					~ 1					$< 10^{-2}$	
Hgg	(0.12	0.011	\checkmark	_						_		_	$< 10^{-2}$	
$Ht\bar{t}$	Collider	·	nn	$e^{+}e^{-}$	e ⁺ e ⁻	$e^{+}e^{-}$	$e^{+}e^{-}$	$\gamma\gamma$	$+\mu^{-}$	target			\checkmark	$< 10^{-2}$	
$H\tau\tau$	E (GeV	14,00	14,000	250	350	500	1,000	126	¹²⁶ HZ	(theory)	1	\checkmark	\checkmark	$< 10^{-2}$	≤100
$H\mu\mu$	\mathcal{L} (fb ⁻¹) 300) 3,000	250	350	500	1,000	250			_	\checkmark		$< 10^{-2}$	mrad
	spin- 2_m^+	~10	$\sigma \gg 10\sigma$	>100	>10\sigma	>100	$>10\sigma$		($>5\sigma$			2205.0	7745 0	
	VVH^{\dagger}	4.10°	7 0.02	$\sqrt{4}$ 7.10 ⁻⁴	$\sqrt{11.10^{-4}}$	4.10-5	$\sqrt{8.10^{-6}}$		✓ _	$< 10^{-5}$		arXiv:	2205.0	//15v3	
	VVH^{\diamond}	$7 \cdot 10$	-4 1.3.10 ⁻⁴	1 <u>√</u>	··· 10 √	- 10 			_	$< 10^{-5}$		o octin	aatoc ir		
	ggH	0.5	0 0.16	_	—	—	_	_	_	$< 10^{-2}$		o estin	lates li		
	$\gamma\gamma H$	_	_	—	—	—	_	0.06	_	$< 10^{-2}$					
	$Z\gamma H$	_	\checkmark	_	_	—	_	_	_	$< 10^{-2}$					
	au au H	\checkmark	\checkmark	0.01	0.01	0.02	0.06	\checkmark	\checkmark	$< 10^{-2}$					
	ttH	√	\checkmark	_	_	0.29	0.08	_	_	$< 10^{-2}$					
	$\mu\mu H$	_	_	_		_	_	_	\checkmark	$< 10^{-2}$					
	4														

[†] estimated in $H \to ZZ^*$ decay mode

arXiv:1310.8361v2

[‡] estimated in $V^* \to HV$ production mode \diamond estimated in $\underline{V^*V^*} \to H$ (VBF) production mode

ZZ-FUSION AT 1TeV ILC

- ✓ Most of the measurements are EFT
- EFT: based on assumptions to reduce number of free parameters
- EFT: fit experimental information which is not necessarily truly CP-sensitive
- Limitation in precision by statistics (forward t-channel process)
- ✓ Background

$$\mathbf{\Phi} = -\begin{cases} arc \ cos \ (\mathbf{cos} \ \mathbf{\Phi}), \ sin \ \mathbf{\Phi} \ge 0\\ 2\pi - arc \ cos \ (\mathbf{cos} \ \mathbf{\Phi}), \ sin \ \mathbf{\Phi} \le 0 \end{cases}$$

Similar approach in arXiv:1208.4018, T. Ogawa, PhD, 2018.

- ✓ Use CP-sensitive observables
- \checkmark There are more than one
- ✓ Angle between production/decay planes is the most sensitive (arXiv:2203.11707v2)
- ✓ ~ 1TeV energies are better than 500GeV/3TeV due to interplay of x-section and centrality
- Chose exclusive qq final state, to avoid high x-section ee(γ) processes

$$cos \boldsymbol{\Phi} = (\hat{\boldsymbol{n}}_1 \cdot \hat{\boldsymbol{n}}_2)$$

$$sin \boldsymbol{\Phi} = \frac{\boldsymbol{q}_1 \cdot (\hat{\boldsymbol{n}}_1 \times \hat{\boldsymbol{n}}_2)}{|\boldsymbol{q}_1 \cdot (\hat{\boldsymbol{n}}_1 \times \hat{\boldsymbol{n}}_2)|}$$

$$\hat{n}_{1} = \frac{q_{e_{i}^{-}} \times q_{e_{f}^{-}}}{|q_{e_{i}^{-}} \times q_{e_{f}^{-}}|} \qquad \hat{n}_{2} = \frac{q_{e_{i}^{+}} \times q_{e_{f}^{+}}}{|q_{e_{i}^{+}} \times q_{e_{f}^{+}}|}$$

EVENT SAMPLES AND SELECTION STRATEGIES

1 TeV	σ (fb)	Expected in 1 ab ⁻¹	Simulated/ILD	Events after final selection (1 ab ⁻¹)
SIGNAL: $e^+e^- \rightarrow Hee, H \rightarrow b\overline{b}$	16	16016/8231 ^{tracker}	27911 DELPHES v3.4.2 (<i>with ILD delphes card</i>) 3495 MC	5658
$e^+e^- \rightarrow q\bar{q}l^+l^-$	255	255000	5886 (1/43)	/
$e^+e^- \rightarrow q\bar{q}$	9375	9375000	120343 (1/78)	/
$e^+e^- ightarrow q\bar{q} l v$	4116	4116000	955058 (1/4)	/

ILD preliminary 180 160 014000 events left after preselection Signation Only 120 100 80 60 40 20 -2 -3 -1 0 2 3 $\Delta \Phi$ (rad) count/1ab⁻ ILD preliminary 50 Signal 40 30 20 10 -3 -2 -1 0 1 2 3 $\Delta \Phi$ (rad) 6

+ Generator study: WHIZARD V2.8.3, UFO framework to import Higgs Characterization model

✓ Preselection – electron isolation:

- ✓ $m_{e^+e^-}$ > 200 GeV (veto HZ)
- ✓ DELPHES electron isolation (default)
- ✓ Signal preselection efficiency: ~71%

✓ Selection cuts:

- ✓ 80 GeV < $m_{q\bar{q}}$ < 160 GeV
- ✓ $m_{Z_1,Z_2} > 30 \; GeV$
- ✓ $p_{Tee} > 15 \text{ GeV}$,
- $\checkmark p_{T_{miss}} > 150 \, GeV$
- ✓ Selection efficiency: 96%
- ✓ Total signal efficiency: ~ 68%
- ✓ Background fully suppressed

1 ab⁻¹, 1 TeV ILC

 $(H \rightarrow bb, 100\% e_L^- e_R^+ \text{ polarization /simulated sample tracker: 14345 DELPHES, 1619 full reconstruction)}$

ACCEPTANCE CORRECTION AND $\Psi_{\rm CP}$ determination

HOW TO EXTRACT $\psi_{\text{CP}}?$

- There is not (known) exact dependence of $\Delta \Phi$ on Ψ_{CP} in HVV vertices (differently from Hff);

- 1. Minimum of $\Delta \Phi$ is sensitive to Ψ_{CP} ;
- 2. Perform a local fit around the minimum b/a:

 $f(\Delta \Phi, \Psi_{CP}) = A + B \cdot \cos(a \cdot \Delta \Phi - b)$

- 3. Position of minimum (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} : (b/a)/ $\Psi_{CP}=k \cdot \Psi_{CP}+m$
- 4. Determine (from simulation) coefficients of that function (k, m) in a certain interval of Ψ_{CP} ;

5. Measure the minimum (b/a) from the fit of experimental data;

6. Ψ_{CP} can be retrieved from quadratic equation:

 $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$

8

2. Perform a local fit around the minimum b/a, generator 10^5 events

5. Retrieved vs. true values of Ψ_{CP} (generator) + uncertainties from fit parameters

3, 4. Position of minimum (b/a)/ $\Psi_{\rm CP}$ is a linear function of $\Psi_{\rm CP}$

k=-7.9 ± 1.9; m=7.6 ± 0.2

Dissipation of extracted $\Psi_{\rm CP}$ around true $\Psi_{\rm CP}$ values $\Delta \Psi_{\rm CP}$ =5 mrad for $\Psi_{\rm CP}$ =0

ANOTHER (CORELATED) OBSERVABLE

$\Delta \phi$ for Ψ_{CP} : -0.2, -0.1, 0, 0.1, 0.2

EXTRACT ψ_{CP} (at ψ_{CP} =0)

Position of minimum (b/a)/ $\Psi_{\rm CP}$ is a linear function of $\Psi_{\rm CP}$

- Instead of the angle between Higgs production planes

 (ΔΦ), azimuthal angle Δφ between final state e⁺ and e⁻ can be measured (F. Zarnecki)
- Minimum of $\Delta \phi$ is sensitive to Ψ_{CP} ;
- Do the same as with $\Delta \Phi$

Dissipation of extracted Ψ_{CP} around true Ψ_{CP} values $\Delta \Psi_{CP}$ =2 mrad for Ψ_{CP} =0

5. Ψ_{CP} FROM RECONSTRUCTED DATA, SCALAR

2000

= 9 mrad

11

SUMMARY

- \checkmark We have performed a complete simulation of CPV Higgs mixing angle measurement Ψ_{CP} ;
- ✓ This is the first result in VBF fusion based on angular observable(s);
- ✓ Fit can be performed around local minima sensitive to Ψ_{CP} . Knowing the dependence of the minima to Ψ_{CP} from simulation, Ψ_{CP} can be determined from (experimental) data;
- ✓ Individual measurement on fully simulated data gives deviation of 0.9 mrad from the truth value. The method is stable for Ψ_{CP} variations up to 0.2 rad;
- ✓ From 1 ab⁻¹ of 1 TeV ILC data, pure scalar state should be measured with 7 mrad statistical uncertainty of Ψ_{CP} for Ψ_{CP} =0 (68% CL); Systematic uncertainty from the fit is found to be smaller (< 1 mrad);
- ✓ The above uncertainty corresponds to $f_{\rm CP}$ ≈ 4.5·10⁻⁵;
- $\checkmark\,$ The study is ongoing.

International Workshop on Future Linear Colliders

BACKUP

2. Perform a local fit around the minimum b/a, generator 10^5 events

5. Retrieved vs. true values of Ψ_{CP} (generator) + uncertainties from fit parameters

3, 4. Position of minimum (b/a)/ $\Psi_{\rm CP}$ is a linear function of $\Psi_{\rm CP}$

k=1.5 \pm 2.4; m=6.8 \pm 0.4

Dissipation of extracted Ψ_{CP} around true Ψ_{CP} values $\Delta \Psi_{CP}$ =6 mrad for Ψ_{CP} =0

- ✓ WHIZARD v1.95, 500 GeV/0.5 ab⁻¹, 1 TeV/1 ab⁻¹, 1.4 TeV/1 ab⁻¹, unpolarized
- ✓ 1 TeV is the optimal energy for this study (already at i.e. 1. 4 TeV the number of events with both electron in the tracker is ~1/5 of the available statistics). At 500 GeV i.e. x-section for ZZ fusion is relatively small (7.2 fb) and number of events in the tracker is order of magnitude smaller than at 1 TeV
- ✓ Around 8 9 · 10³ events with both e⁺ and e⁻ in the tracker in 1 ab^{-1} at 1 TeV ILC

82 % @ 500 GeV

41.7 % @ 1 TeV