MEASUREMENT OF THE CPV HIGGS MIXING ANGLE IN ZZ-FUSION AT 1 TEV ILC

N. Vukasinovic, I. Bozovic, G. Kacarevic

VINCA Institute of Nuclear Sciences, Belgrade, Serbia

SWANA \& LCWS 2023
May 2023

OPENING QUESTIONS

1. Could 125 GeV Higgs mass eigenstate be a CPV mixture of CP-odd and CP-even states of the extended Higgs sector via mixing angle Ψ_{CP} ?
2. If so, with what precision can this effect be measured at ILC ($1 \mathrm{TeV} \mathrm{e}^{+} \mathrm{e}^{-}$linear collider) ?
3. What is the interpretation of measurement sensitivity in the context of Snowmass CPV White paper [arXiv:2205.07715v3]?

Common framework is defined in the Snowmass CPV White paper: Benchmark parameter $\quad f_{C P}^{H X} \equiv \frac{\Gamma_{H \rightarrow X}^{C P \text { odd }}}{\Gamma_{H \rightarrow X}^{C P \text { odd }}+\Gamma_{H \rightarrow X}^{C P \text { even }}}$ quantifying contributions from CP-odd and CP-even amplitudes;

- Assuming $\leq 10 \%$ admixture of $C P$-odd state, sensitivity target on $f_{C P}$ is set from theory;
- Common interpretation for LHC/HL-LHC, EFT and CP-sensitive measurements; $f_{C P} \sim \sin ^{2}\left(\Delta \Psi_{C P}\right)$

STATE OF THE ART (68\% CL, pure scalar)
[arXiv:2205.07715v3]

Most of the measurements are EFT
\checkmark EFT: based on assumptions to reduce number of free parameters
\checkmark EFT: fit experimental information which is not necessarily truly CP-sensitive

Limitation in precision by statistics (forward t-channel process)
Background

Use CP-sensitive observables
\checkmark There are more than one
\checkmark Angle between production/decay planes is the most sensitive (arXiv:2203.11707v2)
$\checkmark \sim 1 \mathrm{TeV}$ energies are better than

$500 \mathrm{GeV} / 3 \mathrm{TeV}$ due to interplay of x-section
and centrality
\checkmark Chose exclusive qq final state, to avoid high
\quad x-section ee (γ) processes

Similar approach in arXiv:1208.4018, T. Ogawa, PhD, 2018.

$$
\begin{aligned}
& \boldsymbol{\operatorname { c o s }} \boldsymbol{\Phi}=\left(\hat{\boldsymbol{n}}_{1} \cdot \hat{\boldsymbol{n}}_{2}\right) \\
& \boldsymbol{\operatorname { s i n }} \boldsymbol{\Phi}=\frac{\boldsymbol{q}_{1} \cdot\left(\hat{\boldsymbol{n}}_{1} \times \hat{\boldsymbol{n}}_{2}\right)}{\left|\boldsymbol{q}_{1} \cdot\left(\hat{\boldsymbol{n}}_{1} \times \hat{\boldsymbol{n}}_{2}\right)\right|} \\
& \hat{n}_{1}=\frac{q_{e_{i}^{-}} \times q_{e_{f}^{-}}}{\left|q_{e_{i}^{-}} \times q_{e_{-}^{-}}\right|} \quad \hat{n}_{2}=\frac{q_{e_{i}^{+}} \times q_{e_{f}^{+}}}{\left|q_{e_{i}^{+}} \times q_{e_{f}^{+}}\right|}
\end{aligned}
$$

EVENT SAMPLES AND SELECTION STRATEGIES

1 TeV	σ (fib)	Expected in 1 ab $^{-1}$	Simulated/ILD	Events after final selection $(1$ ab
SIGNAL: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow$ Hee, $\boldsymbol{H} \rightarrow \boldsymbol{b} \overline{\boldsymbol{b}}$	16	16016 /8231 $^{\text {tracker }}$	27911 DELPHES v3.4.2 (with ILD delphes card) 3495 MC	5658
$e^{+} e^{-} \rightarrow q \bar{q} l^{+} l^{-}$	255	255000	$5886(1 / 43)$	$/$
$e^{+} e^{-} \rightarrow q \bar{q}$	9375	9375000	$120343(1 / 78)$	$/$
$e^{+} e^{-} \rightarrow q \bar{q} l v$	4116	4116000	$955058(1 / 4)$	$/$

+ Generator study: WHIZARD V2.8.3,
UFO framework to import
Higgs Characterization model

Preselection - electron isolation:
$\checkmark m_{e^{+} e^{-}}>200 \mathrm{GeV}$ (veto HZ)
\checkmark DELPHES electron isolation (default)
\checkmark Signal preselection efficiency: ~71\%
\checkmark Selection cuts:
$\checkmark 80 \mathrm{GeV}<m_{q \bar{q}}<160 \mathrm{GeV}$
$\checkmark m_{Z_{1}, z_{2}}>30 \mathrm{GeV}$
$\checkmark p_{T e e}>15 \mathrm{GeV}$,
$\checkmark \quad p_{T_{m i s s}}>150 \mathrm{GeV}$
\checkmark Selection efficiency: 96\%
\checkmark Total signal efficiency: ~68\%
\checkmark Background fully suppressed

1 ab $^{-1}, 1$ TeV ILC

($\mathrm{H} \rightarrow \mathrm{bb}, 100 \% \mathrm{e}_{\mathrm{L}}^{-} \mathrm{e}_{\mathrm{R}}^{+}$polarization /simulated sample tracker: 14345 DELPHES, 1619 full reconstruction)

Corrected signal for pure scalar $\Psi_{\mathrm{CP}}=0$ Reasonably reproduced full physical information

1. Minimum of $\Delta \Phi$ is sensitive to $\Psi_{C P}$

- There is not (known) exact dependence of $\Delta \Phi$ on $\Psi_{\text {CP }}$ in HVV vertices (differently from Hff);

1. Minimum of $\Delta \Phi$ is sensitive to $\Psi_{c p}$;
2. Perform a local fit around the minimum b / a : $f\left(\Delta \Phi, \Psi_{C P}\right)=A+B \cdot \cos (a \cdot \Delta \Phi-b)$
3. Position of minimum (b/a)/ Ψ_{CP} is a linear function of Ψ_{CP} :
(b/a)/ $\Psi_{C P}=k \cdot \Psi_{C P}+m$
4. Determine (from simulation) coefficients of that function (k, m) in a
certain interval of $\Psi_{C P}$;
5. Measure the minimum (b/a) from the fit of experimental data;
6. $\Psi_{c p}$ can be retrieved from quadratic equation:

$$
k \cdot \Psi^{2}{ }_{c P}+m \cdot \Psi_{C P}-(b / a)=0
$$

2. Perform a local fit around the minimum b / a, generator 10^{5} events

$$
\Delta \Phi \text { fit for } \Psi_{C P}=0.1
$$

$$
\text { (b/a)=0.70 } \pm 0.4
$$

5. Retrieved vs. true values of $\Psi_{C P}$ (generator) + uncertainties from fit parameters

3, 4. Position of minimum (b/a)/ $\Psi_{C P}$ is a linear function of $\Psi_{C P}$

$$
\mathrm{k}=-7.9 \pm 1.9 ; \mathrm{m}=7.6 \pm 0.2
$$

Dissipation of extracted $\Psi_{C P}$ around true $\Psi_{C P}$ values $\Delta \Psi_{\mathrm{CP}}=5 \mathrm{mrad}$ for $\Psi_{\mathrm{CP}}=0$

$\Delta \phi$ for $\Psi_{\mathrm{Cp}}:-0.2,-0.1,0,0.1,0.2$

$$
\text { EXTRACT } \psi_{C P}\left(\text { at } \psi_{C P}=0\right)
$$

Position of minimum (b/a)/ $\Psi_{\text {CP }}$ is a linear function of Ψ_{CP}

- Instead of the angle between Higgs production planes $(\Delta \Phi)$, azimuthal angle $\Delta \phi$ between final state e^{+}and e^{-}can be measured (F. Zarnecki)
- Minimum of $\Delta \phi$ is sensitive to $\Psi_{C P}$;
- Do the same as with $\Delta \Phi$

Dissipation of extracted $\Psi_{\text {CP }}$ around true $\Psi_{\text {CP }}$ values $\Delta \Psi_{\text {CP }}=2$ mrad for $\Psi_{C P}=0$

5. Ψ_{CP} FROM RECONSTRUCTED DATA, SCALAR

$\Delta \Phi$ reconstructed, corrected, local fit
$\Psi_{\mathrm{CP}}=0.0009 \mathrm{rad},\left|\Psi_{\text {true }}-\Psi_{\mathrm{CP}}\right|=0.9 \mathrm{mrad}$

Statistical uncertainty - pseudoexperiments

$\Delta \phi$ reconstructed, corrected, local fit

$$
\Psi_{\mathrm{CP}}=0.0016 \mathrm{mrad},\left|\Psi_{\text {true }}-\Psi_{\mathrm{CP}}\right|=1.6 \mathrm{mrad}
$$

\checkmark We have performed a complete simulation of CPV Higgs mixing angle measurement $\Psi_{C P}$;
\checkmark This is the first result in VBF fusion based on angular observable(s);
\checkmark Fit can be performed around local minima sensitive to $\Psi_{C P}$. Knowing the dependence of the minima to $\Psi_{C P}$ from simulation, $\Psi_{C P}$ can be determined from (experimental) data;
\checkmark Individual measurement on fully simulated data gives deviation of 0.9 mrad from the truth value. The method is stable for $\Psi_{C P}$ variations up to 0.2 rad;
\checkmark From $1 \mathrm{ab}^{-1}$ of 1 TeV ILC data, pure scalar state should be measured with 7 mrad statistical uncertainty of Ψ_{CP} for $\Psi_{C P}=0(68 \% C L)$; Systematic uncertainty from the fit is found to be smaller (<1 mrad);
\checkmark The above uncertainty corresponds to $f_{\mathrm{CP}} \approx 4.5 \cdot 10^{-5}$;
\checkmark The study is ongoing.

International Workshop on Future Linear Colliders

BACKUP
2. Perform a local fit around the minimum b/a, generator 10^{5} events

$$
\Delta \Phi \text { fit for } \Psi_{C P}=0
$$

$$
(b / a)=-0.04 \pm 0.03
$$

5. Retrieved vs. true values of $\Psi_{C P}$ (generator) + uncertainties from fit parameters

3, 4. Position of minimum (b/a)/ $\Psi_{C P}$ is a linear function of $\Psi_{C P}$

$$
\mathrm{k}=1.5 \pm 2.4 ; \mathrm{m}=6.8 \pm 0.4
$$

Dissipation of extracted $\Psi_{C P}$ around true $\Psi_{C P}$ values $\Delta \Psi_{\mathrm{CP}}=6 \mathrm{mrad}$ for $\Psi_{\mathrm{CP}}=0$

\checkmark WHIZARD v1.95, $500 \mathrm{GeV} / 0.5 \mathrm{ab}^{-1}, 1 \mathrm{TeV} / 1 \mathrm{ab}^{-1}, 1.4 \mathrm{TeV} / 1 \mathrm{ab}^{-1}$, unpolarized
$\checkmark 1 \mathrm{TeV}$ is the optimal energy for this study (already at i.e. 1.4 TeV the number of events with both electron in the tracker is $\sim 1 / 5$ of the available statistics). At 500 GeV i.e. x-section for ZZ fusion is relatively small (7.2 fb) and number of events in the tracker is order of magnitude smaller than at 1 TeV
\checkmark Around $8-9 \cdot 10^{3}$ events with both e^{+}and e^{-}in the tracker in $1 \mathrm{ab}^{-1}$ at 1 TeV ILC

