XCC: XFEL Compton $\gamma\gamma$ **Collider Higgs Factory**

T. Barklow, C. Emma, D. Fritz, J. Duris, Z. Huang, A. Naji, A. Schwartzman, S. Tantawi, G. White, SLAC, May 17, 2023

- Staging an e^+e^- collider with an initial $\gamma\gamma$ collider at the Higgs resonance is not a new idea. Such a suggestion by H. Sugawara in 2009 for the ILC was rejected in part due to a weak physics case.
- With an X-ray laser in place of an optical laser, the physics case for a 1st stage $\gamma\gamma$ collider Higgs factory is strengthened considerably. The optimum 2nd stage could again be a $\gamma\gamma$ collider, at $\sqrt{s}=380$ GeV to produce $\gamma\gamma \rightarrow H^* \rightarrow HH$.
- The XCC could begin operation on an earlier time scale than an e⁺e⁻ Higgs factory due to its lower cost and smaller footprint.

The XCC is very different from previous $\gamma\gamma$ collider concepts

2

Backgrounds from e^+ , e^- , γ produced at Compton IP's and primary IP:

- (1) Vertex detector inner radius (incoherent e^+e^- pairs from primary IP - same situation as e^+e^- linear colliders)
- (2) Beampipe X_0 (moderate soft X-ray flux from Compton IP's | $\cos \theta$ |< 0.95)
- (3) Forward boundaries of the main tracker/calorimeter and solid angle coverage of forward detector (large hard X-ray flux from Compton IP's $|\cos \theta| > 0.95$)
- (4) Aperture of final quad (e^+, e^-, γ) from primary & Compton IP's must pass through this aperture)

Vertex Detector Inner Radius

CAIN Simulation assuming 5 T Solenoid

4

X-rays from Compton IP's

CAIN Simulation

X-rays handled by adding 0.1% - 1.0% X₀ heavy element to Beampipe for $|\cos \theta| < 0.8$ Required absorber increases to 5.0% X₀ at $|\cos \theta| = 0.93$

Complicated design for $0.95 < |\cos \theta| < 0.99$; probably can't instrument for $|\cos \theta| > 0.99$

ILC/C³ vs. XCC Physics Comparison

Stage I & II Parameters			K	Stage I, 10 years κ framework BR _{BSM} = 0				Stage I+II, 20 years Model Independent EFT			
Colliding Particles	$ ILC/C^3 \\ e^+e^- $	$\begin{array}{c} \text{XCC} \\ \gamma \gamma \end{array}$	coupling <i>a</i>	$\begin{vmatrix} HL-LHC^{\dagger} \\ \Delta a (\%) \end{vmatrix}$	ILC/C ³ $\Delta a (\%)$	XCC Δa (%)	coupling <i>a</i>	ILC/C ³ Δa (%)	XCC # Δa (%)		
Stage I: \sqrt{s} (GeV) Luminosity (fb ⁻¹) Beam Power (MW) Run Time (yr) # Single Higgs	$250 \\ 2000 \\ 5.3 / 4.0 \\ 10 \\ 0.5 \times 10^{6}$	125 460 4.0 10	HZZ HWW Hbb HTT	2.4 2.6 6.0 2.8	0.46 0.44 0.83 0.98	0.83 0.84 0.85 0.89	ΗΖΖ ΗWW Ηbb Ηττ Hgg	0.38 0.37 0.60 0.77 0.96	0.94 0.94 0.95 0.99 1.2		
Stage II: \sqrt{s} (GeV) Luminosity (fb ⁻¹) Beam Power (MW) Run Time (yr)	550 4000 11 / 4.9 10	380 4900 4.9 10	Η τ Ηgg Ηcc Ηγγ ΗγΖ	2.8 4.0 - 2.9 -	1.6 1.8 1.1	1.1 1.2 0.10 1.5	Ηcc Ηγγ ΗγΖ Ημμ Ηtt	1.2 1.0 4.0 3.8 2.8 20	1.2 0.44 1.5 3.5 4.6		
 # Single Higgs (I+II) # Double Higgs # tī 	1.5×10^{6} 840 2.0×10^{6}	1.3×10^{6} 1800 2.9×10^{6}	H μ μ Γ_{tot} † S1 from Tab	6.7 5 ble 36 in arXiv:1	4.0 1.6 902.00134 [h	3.5 1.7 nep-ph]	$ \begin{array}{c c} \hline HHH \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $	20 1.6 0.32 1.3	2.4 - 1.5		

#XCC achieves model independence through measurement of $\Gamma_{\gamma\gamma}$ using monochomatic electron in $e^-\gamma \rightarrow e^-H$ during $\sqrt{s} = 380$ GeV $\gamma\gamma$ run.

1.3%

 $\gamma\gamma \rightarrow HH$ at $\sqrt{s} = 380 \text{ GeV}$

- At 0.4 fb, the cross section for *γγ* → *HH* at √*s*=380 GeV is twice that of e⁺e⁻ → *ZHH* at √*s*=500 GeV, so that the XCC Higgs self-coupling measurement starts out with a √2 statistical advantage over 500 GeV e⁺e⁻ colliders.
- The *HH* final state is simpler than *ZHH*. N.B., the associated Z boson in e⁺e⁻ production of the Higgs is great for measurements such as Γ_{ZZ} & Γ_{invisible}, but can be a complication in other instances.
- Interesting interference between box diagram and s-channel: constructive at XCC vs. destructive at LHC

7

Technical Challenges

- e^- accelerator with 70–120 MV/m (common with C³ e^+e^- collider)
- Focusing of round e^- beams to $\sigma_{x,y} = 5.5$ nm
- Focusing of 1 keV γ XFEL with 700 mJ/pulse to 70 nm FWHM waist
- XFEL and e^- beamline layouts around the IP
- Timing stability of the XFEL laser beam and e^- beam at Compton IP.

Going Forward

- Hope to obtain support for an XCC CDR (such support is required as the XCC work cannot detract from the C³ demo and e⁺e⁻collider design efforts.)
- Due to common accelerator technology, the XCC CDR could be incorporated into the C³ CDR as a 2nd collider configuration option, with the choice between e^+e^- and $\gamma\gamma$ to be made at a later date (much like a CDR might contain several site options).

Backup Slides

KB Mirror Focusing for $\gamma\gamma$ Collider

Some Possibilities for ≤70 nm FWHM Focal Size (Round Equivalent)

Focal Size (nm)	Photon Energy (eV)	Rayleigh Range (um)	RMS Source Size (um)	AOI (deg)	Max E w/ 10x SF (J)	Substrate Length (m)	Unfocused Beam Size (mm)	Source Distance (m)	Reflectivity	Focal Length (m)	IP Distance from Mirror (m)
50	1000	4.5	10	1.30	0.31	1.00	11.34	487	0.872	1.032	0.532
100	1000	18.2	10	0.90	0.68	1.50	11.78	505	0.926	2.144	1.394
50	2000	9.1	10	0.80	0.54	1.00	6.98	600	0.933	1.27	0.770
100	2000	36.4	10	0.60	1.05	1.40	7.33	629	0.967	2.668	1.968
50	2000	9.1	10	0.65	1.21	1.50	8.51	731	0.962	1.548	0.798
100	2000	36.4	10	0.50	2.14	2.00	8.73	750	0.976	3.176	2.176
40	4000	11.6	10	0.4	1.06	1.13	3.93	675	0.982	1.143	0.581
70	4000	35.7	10	0.3	2.40	1.50	3.93	675	0.992	2.001	1.251
40	4000	11.6	10	0.4	2.39	1.50	5.24	899	0.982	1.525	0.775
70	4000	35.7	10	0.3	4.27	2.00	5.24	899	0.992	2.668	1.668

- KB pairs are needed to focus the beam
- If source is round, then KB mirrors will create an elliptical focus
- Round equivalent = $\sqrt{vert * horizontal}$
- Things improve with photon energy for the KB optics: (probably forces 1 keV \rightarrow 2 keV)
 - Damage
 - Reflectivity --> less absorbed power
 - Focal size
 - Rayleigh range

Summary of Initial γγ Collider KB Mirror Study

- Large mirrors (> 1 m) are needed for 1 J per pulse energy
 - 1 m FEL quality substrates produced today
 - 1.5 m substrates produced for synchrotrons
 - > 1 m FEL quality substrates would require development with industry but not R&D
- > 1 km source to KB optic distance is desirable
- FEL average power is a new regime (6.5 kW)
 - This requires an engineering study
 - Very grazing angles help since the most straight forward approach is to absorb less in the substrate
 - Another reason to consider beyond state-of-the-art substrates sizes (e.g. 2 m or beyond)

Final Quad Aperture

CAIN Simulation from IP to Face of Quad, Assume 5 T Solenoid

