
Inverse-Imaging
with larnd-sim

D. Douglas
Neutrino ML meeting

D. Douglas

larnd-sim

Larnd-sim models the mapping of:

● Ionizing energy deposits by
energetic particles to the

To

● Detector ASIC packets
corresponding to charge
induction on 2D segmented
anode planes

D. Douglas

edep-sim
Edep-sim is a wrapper around Geant4.
It models the energy deposition of
charged particles in matter based on
some input momentum profiles and
geometry descriptions

https://github.com/ClarkMcGrew/edep-sim
https://geant4.web.cern.ch/

D. Douglas

Hit Formation

∑

Charge clouds drift to the anode plane

Voltage is induced on the surfaces of electrodes

Pixel electronics register a “hit” and digitize charge after a
threshold is reached + 8 clock cycles

Measurement is (pixel address, timestamp, ADC value)

D. Douglas

The Spaces
larnd-sim

D. Douglas

The Spaces
larnd-sim

Inverse mapping

D. Douglas

Correspondence and Lossiness
Z positioning is not perfect, relies on
accurate trigger and drift model

Trigger structure is not perfect, can
fail for low energy events

Drift model in larnd-sim assumes
perfect uniformity. In the real
detector, there are observed
imperfections in the performance of
field shaping devices

D. Douglas

Triggering
There are two main types of triggers
in this detector:

● “Self trigger”: the anode plane
itself registers a hit

● “External trigger”: external
systems (light detectors,
external muon taggers) register
a signal

These trigger packets mark a t0
against which drift time is measured Both are currently implemented in larnd-sim (for

module0!) (not in ynashed’s fork!)

D. Douglas

Detection Effects
ADC hits are a sub-sample of the actual
charge distribution due to threshold, absptn.

Timing is imperfect: hit time ≠ charge arrival
time (induction happens prior to charge
arrival, worse for larger charge clouds)

Z-placement is imperfect because

● Hit timing
● Trigger timing
● (in data) drift non-uniformity not

modeled

D. Douglas

Detection Effects
ADC hits are a sub-sample of the actual
charge distribution due to threshold, absptn.

Timing is imperfect: hit time ≠ charge arrival
time (induction happens prior to charge
arrival, worse for larger charge clouds)

Z-placement is imperfect because

● Hit timing
● Trigger timing
● (in data) drift non-uniformity not

modeled

Charge not
registered

D. Douglas

Detection Effects
ADC hits are a sub-sample of the actual
charge distribution due to threshold, absptn.

Timing is imperfect: hit time ≠ charge arrival
time (induction happens prior to charge
arrival, worse for larger charge clouds)

Z-placement is imperfect because

● Hit timing
● Trigger timing
● (in data) drift non-uniformity not

modeled

Z-position
mis-match

D. Douglas

Voxelized dE/dx
As it is currently, the edep-sim toolchain produces
segments of energy deposition

Larnd-sim transports these segments (applying
attenuation and diffusion)

Pixel response is implemented on a sub-grid of the pixel
pitch, so voxelization of edep inputs is not a huge task

This will allow our network architecture to map
voxel-to-voxel (with edep voxels being 10x finer than
larnd-sim voxels). This is in the preliminary stages!

D. Douglas

For now, we can apply a voxelization in parallel

Voxelized dE/dx

larnd-sim

Inverse
mapping

Edep-sim
voxelizer

(compute loss function)

D. Douglas

A differentiable implementation of larnd-sim would allow back-propagation of a
loss through the detector simulation, allow us to train on data directly

Using the Differentiable Simulation (FUTURE!)

Inverse
mapping

D. Douglas

A differentiable implementation of larnd-sim would allow back-propagation of a
loss through the detector simulation, allow us to train on data directly

Using the Differentiable Simulation (FUTURE!)

larnd-sim
(differentiable)

Inverse
mapping

(compute loss
function)

D. Douglas

A differentiable implementation of larnd-sim would allow back-propagation of a
loss through the detector simulation, allow us to train on data directly

Using the Differentiable Simulation (FUTURE!)

larnd-sim
(differentiable)

Inverse
mapping

Loss gradient

(compute loss
function)

D. Douglas

Using the Differentiable Simulation
The differentiable fork of larnd-sim is currently only configured for module0

Updating it to use larnd-sized geometry may be possible, but requires some work.

Will proceed with the upstream fork of larnd-sim for now, but it will be nice to have
differentiability for the future

D. Douglas

Sample Preparation
~100k single primary particle events are prepared on SDF
at /sdf/group/neutrino/dougl215/singleParticle with MPV

An example of how to parse these outputs into x,y,z,dQ (in
the form of a simple plotting utility) can be grabbed from
here: https://github.com/DanielMDouglas/NDeventDisplay

https://github.com/DanielMDouglas/NDeventDisplay

D. Douglas

Next Steps
● Generate Train/Test samples ✔
● Preliminary reconstruction ✔
● Data loader ✔
● Configurable network ✔
● Loss function 🤔 some ideas… start with MSE

● Train!
● Voxelization

○ Edep-sim voxelizer ✔
○ Larnd-sim voxelized input fork

