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larnd-sim

Larnd-sim models the mapping of:

e |onizing energy deposits by
energetic particles to the
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e Detector ASIC packets
corresponding to charge
induction on 2D segmented
anode planes

7R U.S. DEPARTMENT OF Stanford
N\ ENERGY University D. Douglas




edep-sim
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Edep-sim is a wrapper around Geant4.
It models the energy deposition of
charged particles in matter based on
some input momentum profiles and
geometry descriptions
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https://github.com/ClarkMcGrew/edep-sim
https://geant4.web.cern.ch/
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Hit Formation

Drift Paths

2 (cm)

Charge clouds drift to the anode plane
Voltage is induced on the surfaces of electrodes

Pixel electronics register a “hit” and digitize charge after a
threshold is reached + 8 clock cycles

Measurement is (pixel address, timestamp, ADC value)
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Dl AN
Correspondence and Lossiness
Z positioning is not perfect, relies on "
accurate trigger and drift model )
Trigger structure is not perfect, can
fail for low energy events
Drift model in larnd-sim assumes T e
perfect uniformity. In the real 812 —66 _g
detector, there are observed %_{?f- ?3 —f’g o
imperfections in the performance of = e - -

- = 77.5 80.0
field shaping devices 0.0 725 y i)

FAY US: DEPAR Stanford

TMENT O
:z 2 EN ERGY University D. Douglas




Triggering

There are two main types of triggers
in this detector:

LArPix pixelated anode

Carbon-loaded Kapton
field cage sheet

e “Self trigger”: the anode plane
itself registers a hit

e ‘“External trigger”: external
systems (light detectors,
external muon taggers) register
a signal

Cathode

LCM tile

ArCLight tile

These trigger packets mark a t , , ,
. : cee . 0 1 Both are currently implemented in larnd-sim (for
against which drift time is measured module0!) (not in ynashed's fork!)
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Detection Effects

ADC hits are a sub-sample of the actual
charge distribution due to threshold, absptn.

Timing is imperfect: hit time # charge arrival
time (induction happens prior to charge
arrival, worse for larger charge clouds)

Z-placement is imperfect because

e Hit timing

e Trigger timing

e (in data) drift non-uniformity not
modeled
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Detection Effects
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Detection Effects

ADC hits are a sub-sample of the actual
charge distribution due to threshold, absptn.

Timing is imperfect: hit time # charge arrival
time (induction happens prior to charge
arrival, worse for larger charge clouds)

Z-placement is imperfect because

e Hit timing

e Trigger timing

e (in data) drift non-uniformity not
modeled
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Voxelized dE/dx

l Drift Paths l

As it is currently, the edep-sim toolchain produces
segments of energy deposition

2 (cm)

Larnd-sim transports these segments (applying
attenuation and diffusion)

Pixel response is implemented on a sub-grid of the pixel

pitch, so voxelization of edep inputs is not a huge task

This will allow our network architecture to map
‘1 voxel-to-voxel (with edep voxels being 10x finer than
B larnd-sim voxels). This is in the preliminary stages!
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Voxelized dE/dx
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For now, we can apply a voxelization in parallel
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Using the Differentiable Simulation (FUTURE!)

A differentiable implementation of larnd-sim would allow back-propagation of a
loss through the detector simulation, allow us to train on data directly
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Using the Differentiable Simulation (FUTURE!)

A differentiable implementation of larnd-sim would allow back-propagation of a
loss through the detector simulation, allow us to train on data directly
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Using the Differentiable Simulation (FUTURE!)

A differentiable implementation of larnd-sim would allow back-propagation of a
loss through the detector simulation, allow us to train on data directly
Loss gradient

larnd-sim
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Using the Differentiable Simulation

The differentiable fork of larnd-sim is currently only configured for moduleO
Updating it to use larnd-sized geometry may be possible, but requires some work.

Will proceed with the upstream fork of larnd-sim for now, but it will be nice to have
differentiability for the future
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Sample Preparation

~100k single primary particle events are prepared on SDF
at /sdf/group/neutrino/dougl215/singleParticle with MPV

An example of how to parse these outputs into x,y,z,dQ (in
the form of a simple plotting utility) can be grabbed from
here: https://qithub.com/DanielMDouglas/NDeventDisplay

N Particles per Event

10*
10!

Track dE [MeV]

107

T 1000
Primary [p] [MeV /]
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https://github.com/DanielMDouglas/NDeventDisplay

Next Steps

Generate Train/Test samples
Preliminary reconstruction

Data loader

Configurable network

Loss function 5 some ideas... start with MSE
Train!

Voxelization
o Edep-sim voxelizer
o Larnd-sim voxelized input fork
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