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larnd-sim

Larnd-sim models the mapping of:

● Ionizing energy deposits by 
energetic particles to the 

To

● Detector ASIC packets 
corresponding to charge 
induction on 2D segmented 
anode planes



D. Douglas

edep-sim
Edep-sim is a wrapper around Geant4.  
It models the energy deposition of 
charged particles in matter based on 
some input momentum profiles and 
geometry descriptions

https://github.com/ClarkMcGrew/edep-sim
https://geant4.web.cern.ch/
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Hit Formation

∑

Charge clouds drift to the anode plane

Voltage is induced on the surfaces of electrodes

Pixel electronics register a “hit” and digitize charge after a 
threshold is reached + 8 clock cycles

Measurement is (pixel address, timestamp, ADC value)
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The Spaces
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The Spaces
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Inverse mapping
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Correspondence and Lossiness
Z positioning is not perfect, relies on 
accurate trigger and drift model

Trigger structure is not perfect, can 
fail for low energy events

Drift model in larnd-sim assumes 
perfect uniformity.  In the real 
detector, there are observed 
imperfections in the performance of 
field shaping devices
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Triggering
There are two main types of triggers 
in this detector:

● “Self trigger”: the anode plane 
itself registers a hit

● “External trigger”: external 
systems (light detectors, 
external muon taggers) register 
a signal

These trigger packets mark a t0 
against which drift time is measured Both are currently implemented in larnd-sim (for 

module0!) (not in ynashed’s fork!)
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Detection Effects
ADC hits are a sub-sample of the actual 
charge distribution due to threshold, absptn.

Timing is imperfect: hit time ≠ charge arrival 
time (induction happens prior to charge 
arrival, worse for larger charge clouds)

Z-placement is imperfect because

● Hit timing
● Trigger timing
● (in data) drift non-uniformity not 

modeled
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Detection Effects
ADC hits are a sub-sample of the actual 
charge distribution due to threshold, absptn.
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Voxelized dE/dx
As it is currently, the edep-sim toolchain produces 
segments of energy deposition

Larnd-sim transports these segments (applying 
attenuation and diffusion) 

Pixel response is implemented on a sub-grid of the pixel 
pitch, so voxelization of edep inputs is not a huge task

This will allow our network architecture to map 
voxel-to-voxel (with edep voxels being 10x finer than 
larnd-sim voxels).  This is in the preliminary stages!
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For now, we can apply a voxelization in parallel

Voxelized dE/dx

larnd-sim

Inverse 
mapping

Edep-sim 
voxelizer

(compute loss function)
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A differentiable implementation of larnd-sim would allow back-propagation of a 
loss through the detector simulation, allow us to train on data directly

Using the Differentiable Simulation (FUTURE!)

Inverse 
mapping
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A differentiable implementation of larnd-sim would allow back-propagation of a 
loss through the detector simulation, allow us to train on data directly

Using the Differentiable Simulation (FUTURE!)

larnd-sim
(differentiable)

Inverse 
mapping

Loss gradient

(compute loss 
function)



D. Douglas

Using the Differentiable Simulation
The differentiable fork of larnd-sim is currently only configured for module0

Updating it to use larnd-sized geometry may be possible, but requires some work.

Will proceed with the upstream fork of larnd-sim for now, but it will be nice to have 
differentiability for the future
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Sample Preparation
~100k single primary particle events are prepared on SDF 
at /sdf/group/neutrino/dougl215/singleParticle with MPV

An example of how to parse these outputs into x,y,z,dQ (in 
the form of a simple plotting utility) can be grabbed from 
here: https://github.com/DanielMDouglas/NDeventDisplay

https://github.com/DanielMDouglas/NDeventDisplay
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Next Steps
● Generate Train/Test samples ✔
● Preliminary reconstruction ✔
● Data loader ✔
● Configurable network ✔
● Loss function 🤔 some ideas… start with MSE

● Train!
● Voxelization

○ Edep-sim voxelizer ✔
○ Larnd-sim voxelized input fork


