Backgrounds for Supernova Neutrino Detection with Underground Detectors (Liquid Argon)

Juergen Reichenbacher, Gleb Sinev

South Dakota School of Mines & Technology (SDSMT)

3rd New Physics Opportunities at Neutrino Facilities (NPN) SLAC (July 12, 2023)

1.) Ambient Sources

The supernova neutrino signal

1.) Supernova Neutrinos with LArTPCs Liquid argon time projection chambers

J. Reichenbacher (SDSM&T)

1.) Supernova Neutrinos with Underground Detectors

Kate Scholberg

Same supernova model, other future large detectors

- neutronization burst much more visible in LAr
- time profile varies by hierarchy, differently for different detectors
- \Rightarrow We need LAr SNB detector!

7/12/2023

1.) Supernova Neutrinos with Large Underground LArTPC

Supernova signal in a liquid argon detector

1.) Supernova Neutrinos with Large Underground LArTPC

Example of supernova burst signal in 34 kton of LAr

arXiv:1307.7335

7/12/2023

J. Reichenbacher (SDSM&T)

1.) Supernova Neutrinos with Large Underground LArTPC

20 MeV v_e , 14.1 MeV e⁻, simple model based on R. Raghavan, PRD 34 (1986) 2088 Improved modeling based on ⁴⁰Ti (⁴⁰K mirror) β decay measurements in progress **Direct measurements (and theory) needed!**

7/12/2023

J. Reichenbacher (SDSM&T)

1.) Supernova Neutrinos with Liquid Argon Detectors

MARLEY: Model of Argon Reaction Low-Energy Yields

- Goal: determine whether "every little thing gonna be all right" for SN neutrino physics in LArTPCs
- \bullet Event generator for SN ν on $^{40}\mathrm{Ar}$

• Current version focuses on generating $\nu_{\rm e} {\rm ArCC}$ events

R. Svoboda, S. Gardiner, C. Grant & E. Pantic

1.) Supernova Neutrinos with Liquid Argon Detectors

Example neutron event (true trajectories)

- E_{ν} = 16.3 MeV
- e⁻ deposited 4.5 MeV
- No primary γ s from vertex
- ³⁹K deposited 68 keV
- n deposited 7.6 MeV (mostly from capture γ s)
- Total visible energy: 12.2 MeV
- Visible energy sphere radius:

1.44 m

 Neutrons bounce around for a long time!

7/12/2023

-> need to control u/a neutron backaround! (see also Nick Carrara's talk)

J. Reichenbacher (SDSM&T)

μ Background at 4850 ft Level at SURF

7/12/2023

Ray Davis' Homestake Chlorine Detector had Already a Water Shield

- DUNE HD & VD have virtually no passive shielding towards rock (and no active veto)
- > How well DUNE HD, VD, and modules 3 & 4 could do low energy physics depends more or less on the underground cavern background at the Ross campus of Sanford Lab

7/12/2023

External Cavern Backgrounds for Underground Detectors/Cryostats

- Propagated rock&shotcrete neutron spectrum
- Propagated gamma-ray spectrum from neutron captures in rock&shotcrete
- Propagated gamma-ray spectrum from neutron captures in cryostat (mostly steel & foam)
- Propagated gamma-ray spectrum from cavern gamma-rays from rock&shotcrete
- Propagated foam gamma-ray spectrum from cryostat insulation

Internal Argon Backgrounds (DUNE HD, TDR)

Cavern Neutrons ARE a Problem for u/g LArTPCs

- > neutron captures can look like v's for DAQ (=> rate issue, supernova burst v trigger efficiency, solar v's)
- neutrons are difficult to shield
 (=> simulate large geometry w/ detailed chemical composition)
- > external radiological neutron flux is important (rock, shotcrete)
- > ²³⁸U content of materials for SF
- > α emitter content of materials + chemical composition -> (α ,n)
- customized (α,n) production yield calculations important!
 (need cross section measurements where uncertainties large)
- -> need for entire detector geometry & surrounding environment: extensive radiological assays + chemical composition assays

Neutron Production from Cavern Walls

Start material for neutrons entering 1mx1m square in cavern from wall and that do not originate in steel

X of origin for neutrons entering 1mx1m square in cavern from wall and that do not originate in steel

LArSoft simulated total cavern neutron flux: (1.08 ± 0.2[syst.]) x 10^-6 neutron cm-2 s-1

with E_{kin} > 0.1 MeV (fast neutron flux in cavern): (2.24 ± 0.5[syst.]) x 10^-7 neutron cm-2 s-1

Mean DUNE Rock: 66.7 ± 0.3 Bq/kg of 238U 31.8 ± 0.2 Bq/kg of 232Th

Worst rock (2x activity) could cause 60% increase to ≤ 1.7 x 10^-6 neutron cm−2 s−1

Shotcrete Supplier A (15 cm thick): 24.6 ± 0.4 Bq/kg of 238U 6.0 ± 0.2 Bq/kg of 232Th

Worst shotcrete (4x activity) could double rate to ≤ 2.2 x 10^-6 neutron cm−2 s−1

<u>Use worst case as indicated by</u> <u>our latest excavation site assays</u> <u>of shotcrete</u>

Radiological Assay Paradigms for u/g LArTPCs

Radiological assays (γ - and α -spectroscopy, emanation) of materials to quantify background and learn for next u/g LArTPCs (want extensive assay program)!

Chemical composition of detector materials very important too (different chemical assay methods like XRD, XRF, ICP-MS, FT-IR, CHN etc. needed for each different type of material!):

- insulating foam defines neutron attenuation, but also neutron capture time, even in a 10 kt LAr volume (some neutrons can still escape)
- critical aluminium content drives (α, n) production rates from rock/shotcrete
- cryostat is ~10% of mass of detector (steel's radiopurity?)

Fast turn-around of assays & simulations can help with sensitivity for next u/g LArTPCs for low energy physics (SNB and solar)

7/12/2023

γ-Ray Production from Cavern Walls

rt material for gammas entering 1mx1m square in cavern from wall and that do not originate in steel

(simulation w/ LArSoft and Decay0 and new 232Th decay chain implementation)

latest excavation

site assays

of shotcrete

Simulated DUNE cavern y flux:

3.07 ± 0.2[syst.] y cm-2 s-1

Mean DUNE Rock: 665.5 ± 1.4 Bq/kg of 40K 66.7 ± 0.3 Bq/kg of 238U 31.8 ± 0.2 Bq/kg of 232Th

Worst rock (2x activity) could cause 35% increase to ≤ 4.1 y cm-2 s-1

Shotcrete Supplier A (15 cm thick $\sim 2\Lambda$): 105.8 ± 4.5 Bq/kg of 40K 24.6 ± 0.4 Bq/kg of 238U 6.0 ± 0.2 Bq/kg of 232Th

Worst shotcrete (4x activity) could

triple y rate to $\leq 9.2 \text{ y cm} - 2 \text{ s} - 2$

LZ Davis campus γ flux measured:

arXiv 1904.02112] $1.9 \pm 0.4 \gamma$ cm-2 s-1

[Astroparticle Physics, Volume 116, Pages 102391 (2020)

1/26/23

Juergen Reichenbacher (SD Mines)

17

Illustration of cavern view from top (10 kton LArTPC)

Area factor for flux correction at argon interface due to smaller surface area compared to outer cryostat:

 $\frac{1.3687}{\text{argon surface [cm^2]} (1783.6 \times 6583.6 \times 2 \text{ sides}) + (1893.6 \times 6583.6 \times 2 \text{ tops}) + (1893.6 \times 1783.6 \times 2 \text{ faces})}{\text{argon surface [cm^2]} (1400 \times 6200 \times 2 \text{ sides}) + (1510 \times 6200 \times 2 \text{ tops}) + (1510 \times 1400 \times 2 \text{ faces})}$

Propagated cavern neutrons through cryostat

Cavernwall Neutrons at LAr Interface

Reduction factor: 21.816 ± 0.009 (stat) (for neutrons >0.1 MeV: 90.04 ± 0.17 (stat))

 $\Rightarrow Scale with worst shotcrete (4x activity) <u>double neutron rate</u>$ $<math display="block">\Rightarrow \underline{0.26996 \pm 0.00036 \text{ (stat) } 10^{-6} \text{ n/(cm}^2 \cdot \text{s)}}$

Juergen Reichenbacher, SDSMT

Propagated cavern neutrons: capture γ-rays from cryostat

Conversion factor: 0.28515 ± 0.00005 (stat) γ/n

 $\Rightarrow Scale with worst shotcrete (4x activity) <u>double neutron rate</u>$ $<math display="block">\Rightarrow \underline{1.6793 \pm 0.0022 \text{ (stat) } 10^{-6} \text{ } \text{/(cm}^2 \cdot \text{s)}}$

Propagated cavern **n-capture γ-rays** from rock/shotcrete

Reduction factor: 13.807 ± 0.002 (stat) ~1/3 of n-capture y-rays from cryostat! \Rightarrow Scale with worst shotcrete (4x activity) double neutron rate \Rightarrow 0.5439 ± 0.0005 (stat) 10⁻⁶ y/(cm²·s)

Propagating cavern gamma-rays through cryostat

Reduction factor: 23.985 ± 0.003 (stat) (for gamma-rays >2.65 MeV: 20.81 ± 0.14 (stat))

 $\Rightarrow Scale with worst shotcrete (4x activity) <u>triple gamma rate</u>$ $<math display="block">\Rightarrow \underline{1.05104 \pm 0.00021 \text{ (stat) } \gamma/(\text{cm}^2 \cdot \text{s})}$

-> Want inner passive shielding (e.g. dead outer LAr shell)

Juergen Reichenbacher, SDSMT

Propagating **foam gamma-rays** through cryostat

Foam Gammas at LAr Interface

=> Subdominant but still simulated

Juergen Reichenbacher, SDSMT

Summary Table of External Backgrounds (Analytical Estimate only, no DUNE Reco Sim)

	4pi flux in cavern	reduction	attenuation	area	4pi flux at LAr	rate in full LAr	rate in HD	
external background	[cm^-2 s^-1]	factor	factor	factor	[cm^-2 s^-1]	(VD) [Hz]	[Hz]	
								predicted and 4.6+/-1.1 Hz in HD
cavern neutrons	2.94E-06	21.816	10.908	1.3687	2.70E-07	5.34E+00	4.63E+00	from simulation of 1x2x6
n-capture gammas from								predicted rates [Hz] w/ approx.
cryostat	N/A	N/A	N/A	1.3687	1.68E-06	3.32E+01	1.50E+00	gamma-att. for 1.5 MeV
n-capture gammas from								predicted rates [Hz] w/ approx.
rock/shotcrete	3.75E-06	13.807	6.9035	1.3687	5.44E-07	1.08E+01	4.87E-01	gamma-att. for 1.5 MeV
cavern gammas from								predicted rates [Hz] w/ approx.
rock/shotcrete	12.60418	23.985	11.9925	1.3687	1.0510	2.08E+07	9.40E+05	amma-att. for 1.5 MeV
								predicted rates [Hz] w/ approx.
foam gammas	N/A	N/A	N/A	1.0000	0.0441	8.72E+05	3.95E+04	gamma-att. for 1.5 MeV

⇒ rate in full LAr (VD) from cavern gammas from rock/shotcrete is ~21 MHz mostly at outer edges compared to ~17 MHz Ar-39 rate uniformly distributed

 \Rightarrow neutron capture rates in LAr expected to be below critical SNB trigger rate of 10 Hz

Early and Late 238U Decay Chain and 232Th Decay Chain

Modified from

Juergen Reichenbacher (SDSM&T)

7/12/2023

'Origin of Radioactivity in Fuel-Cycle Facilities | The National Academies Press'

Light yield for different particles - alphas at ~ 0.8 of `full' yield.

1540 Jpn. J. Appl. Phys. Vol. 41 (2002) Pt. 1, No. 3A

Thanks to Stephen Pordes!

Fig. 2. LET dependence of scintillation yield, *Y*, in liquid argon. Solid circles show the yields for relativistic particles.^{1–3)} Non-relativistic particles are represented by open circles.^{5–8)} Open squares and triangles show the yields for non-relativistic protons²⁴⁾ whereas small open circles show those for non-relativistic helium ions.²²⁾

Light and charge yield for electrons and gammas vs Electric Field

[65] S. Kubota et al., Phys. Rev. B 17 (1978) 2762;

Figure 3.7: The graph shows the behaviour of the luminescence light intensity and of the collected charge as function of the electric field strength. The y axis scales are expressed in arbitrary unit. The left scale refers to luminescence intensity: the value 100 is set for the total light collected at $E_d = 0 \ kV/cm$. The right scale refers to wire collected charge and the value 100 is set for the initially produced charge Q_0 . About 30% of the light produced at zero field seems to be uninfluenced by the application of the electric field, most likely representing the excitation component of the luminescence [65]. The data refer to 1 MeV primary electrons.

Radon is Potentially a Big Problem for Next Gen Neutrino & DM Experiments (e.g. DUNE)

- > α 's have high light yield in LAr (barely quenched)
- > 40 Ar(α , γ) -> 15 MeV γ 's that look like v's
- > $^{40}Ar(\alpha,n)$ -> neutron captures in LAr that look like v's
- > α surface contamination from: *Construction and installation period:* - radon daughter plate-out in air (²¹⁰Pb, T_{1/2}=22 y) *Detector operation period:* - radon daughter migration in LArTPC (-> cathod)
- > ²²²Rn continuously emanating into LAr from materials

Precise (alpha, n) Cross Section Data Needed: Aluminium in Rock/Shotcrete and for Argon Target

Aluminium in materials is critical for (alpha, n) production of radiological neutrons (verbal comm. V. Kudryavtsev)

Cross Section (barns)

²²²Rn DUNE Requirement <1 mBq/kg (²²⁰Rn <1/3 mBq/kg based on filter material radio-assays)

G10/FR4 cathode measured 4.9 Bq/kg of ⁴⁰K

Summary of External Backgrounds (Ross @ SURF):

LArSoft simulated total cavern neutron flux: ($1.08 \pm 0.2[syst.]$) x 10⁻⁶ neutron cm⁻² s⁻¹

with $E_{kin} > 0.1$ MeV (fast neutron flux in cavern): ($2.24 \pm 0.5[syst.]$) x 10^-7 neutron cm-2 s-1 Depending mostly on shotcrete and also rock after excavation:

Worst rock could cause 60% increase of neutron flux to $\leq 1.7 \text{ x } 10^{-6}$ neutron cm-2 s-1

Worst shotcrete could double total neutron flux in cavern to $\leq 2.2 \times 10^{-6}$ neutron cm-2 s-1

Simulated Ross cavern γ flux:

 3.07 ± 0.2 [syst.] γ cm-2 s-1

 γ flux from neutron captures in cavern walls: (1.37 ± 0.3[syst.]) x 10^-6 γ cm-2 s-1 Depending mostly on shotcrete and also rock after excavation:

Worst rock could cause 35% increase of γ flux to $\leq 4.1 \ \gamma \ cm-2 \ s-1$

Worst shotcrete could triple γ flux in cavern to $\leq 9.2 \gamma$ cm-2 s-1

Underground muon flux at Ross campus @ SURF:

 $(5 \pm 1[syst.]) \ge 10^{-9} \ \mu \ cm - 2 \ s - 1$ @ 4200 mwe

Underground radon content of cavern air at Ross campus @ SURF:

500 Bq/cm³ of ²²²Rn on average

7/12/2023

Low Background LArTPC Cryostat ('SloMo' as Potential DUNE Module w/ 3 kton UAr)

Investment in a DUNE Module of Opportunity would be game-changing for low-energy physics

Low-background module: J Phys G 50 060502

- Rate reduced by passive shielding
- Increased photodetector coverage
- Heavy fiducialization
- Argon depleted of ³⁹Ar

(see Dan Pershey's and Gleb Sinev's talks)

DUNE low-background module concept Increased SiPM (black dots) coverage on interior of acrylic vessel (white) forming volume of increased light yield which contains a 1-3 kt interior fiducial volume (dark red)

Potential for 100-keV thresholds would turn DUNE into a kt-scale powerhouse

All this possible without losing sensitivity to neutrino mixing parameters

⇒ does not distort DUNE physics, competitive on DarkSide timescale, enables more solar neutrino physics (dm^2 & NSI study), 0nubb with xenon doping [*https://arxiv.org/pdf/2203.08821.pdf*] 7/12/2023 Juergen Reichenbacher (SDSM&T) 32

Acknowledgements

Layne Tieszen (SD Mines), Aran Borkum (Sussex), Simon Peeters (Sussex), James Haiston (SD Mines), Madan Timalsina (SD Mines), Scott Beeler & Jacob Peterson (SD Mines), Jaret Heise (SURF) & Bill Roggenthen (SD Mines), Vitaly Kudryavtsev (Sheffield), Serenity Engel (SD Mines), Faith Beall (SD Mines), Connor McCollar & Evan Norenberg (SD Mines), Christopher Jackson (PNNL), Eric Church (PNNL), Pierre Lasorak (Sussex), Thiago Bezerra (Sussex), Sammy Valder (Sussex), Shirley Li & John Beacom (Ohio), Gwenn and Jarek (Lancaster), Roberto Acciarri (SBND/FNAL), Dan Pershey & Kate Scholberg (Duke) and Laura, Dom and Clara and DUNE!