Supernova Neutrinos in THEIA

Paul Hackspacher

THEIA Detector

- THEIA25:
 20m × 18m × 70m ≙ 25kt
- Photosensors: 22500 × 10" PMTs (25% cov.) 700 × 8" LAPPDs (3% cov.)
- Location:
 SURF (4300 m.w.e.)
- Radiopurity: 10⁻¹⁵g/g ²³⁸U, ²³²Th, ⁴⁰K

THEIA100:
 50m × 50m ≙ 100kt

Water-based Liquid Scintillators

- Cherenkov:
 - Directional Information
 - Particle Identification
- Scintillation:
 - Energy Resolution
 - Low Threshold
- C/S-ratio:
 - Background Rejection

Separating Scintillation And Cherenkov

- Angular Emission
- Wavelength

• Timing Profile

WbLS Recipe

- ~ 10% LS inside Surfactant Micelle Dissolved in Water
- Water-based Slow Scintillator to Delay LS Emission Further Away From Cherenkov Light
- Possibility of Metal Loading (e.g. Gadolinium for n Capture)

Micelle

(Galactic) Supernova Neutrinos

• 100kt WbLS (10% LS)

- 10kpc Distance
- GVKM Model

IBD	$\overline{v}_e + p \rightarrow n + e^+$	19,800
NCO	$^{16}{ m O}(u, u)^{16}{ m O}^{*}$	1,100
ES	$V_e + e \rightarrow e + V_e$	960
\overline{V}_{e} O	$^{16}{ m O}(\overline{\nu}_{e}, e^{+})^{16}{ m N}$	440
V _e O	$^{16}{ m O}({ m v}_{e},e^{-})^{16}{ m F}$	340

Pointing Accuracy

From Cherenkov Direction: <1° (THEIA100) 2° (THEIA25)

Diffuse Supernova Neutrino Background

visible scintillation energy (MeV) 10 15 20 30 5 25 35 • $\overline{\nu}_{\rho}$ Flux: $\mathcal{O}(100 \text{ cm}^{-2}\text{s}^{-1})$ $\overline{v}_{e} \text{ Flux: } \mathcal{O}(100 \text{ cm}^{-2}\text{s}^{-1}) \quad \widehat{\mathbf{w}}_{e}^{1} = 17^{+34}_{-8} \text{ evts}/(100 \text{ kt yr}) \quad \widehat{\mathbf{w}}_{e}^{1} = 10^{3}$ DSNB **Reactor BG** AtmCC BG AtmNC BG 10² _i9 BG • Backgrounds: events /(100 ktyr _____1 FastN BG 10 ⁹Li (μ-induced) 530±106/(100 kt yr) - Fast n (μ-induced) 113.2/(100 kt yr) 10⁻² - Atm v ($\pi \rightarrow \mu + v_{\mu}$) 10^{3} 10^{-3} 48±17/(100 kt yr) 2 3 5 6 4 scintillation p.e.

Background Rejection

- Quality Cuts:
 - ⁹Li, τ=257ms: ²/₂
 2s time cut, 5m radius cut around μ track
 - Fast n:
 1.5m FVC (THEIA25)
 2.5m FVC (THEIA100)
 - Atm. NC:
 Energy-dep. C/S cut

Expected DSNB Results

- $\overline{\nu}_e$ Flux: $\mathcal{O}(100 \text{ cm}^{-2}\text{s}^{-1}) \triangleq$ $\sim 17^{+34}_{-8} \text{ evts } / (100 \text{ kt yr})$
- Backgrounds: 9±2 evts /(100 kt yr)

Detector Comparison

Signal Rate

Thank You For Your Attention!

GVKM Model

- ArXiv:0902.0317
- Core-Collapse Supernova
- 3-Flavor Framework
- v-Matter- & v-v-Coupling
- Adiabatic Density Profile
- Multiple Resonances

- $\Delta m_{12}^2 = 8 \times 10^{-5} eV^2$
- $\sin^2 2\theta_{12} = 0.83$
- $|\Delta m_{23}^2| = 3 \times 10^{-3} eV^2$
- $\sin^2 2\theta_{23} = 1$
- δ_{CP}=0
- Depends on MO and θ_{13}

⁹Li-Background

- Created by Cosmic µ
- Spallation on ¹⁶O/¹²C
- Only ⁹Li with Sufficient Energy to Mimick v-Signal

• ⁹Li
$$\xrightarrow{50\%}$$
 ⁹Be + β^{-}
⁹Li $\xrightarrow{50\%}$ ⁹Be^{*} + β^{-}
 \rightarrow ⁹Be^{*} \longrightarrow ⁸Be+n

- Solution:
 - Place Detector Underground (Reduce μ Rate)
 - Veto Around μ-Tracks
 (In THEIA: 5m, 2s)

Fast-n-Background

- Created by Cosmic µ
- μ Produce n by Reaction with Surrounding Material (Rock)
- Elastic Scattering of n Mimicks β Signal
- Thermalization+Capture of n as Delayed Coincidence

- Solution:
 - Place Detector Underground (Reduce μ Rate)
 - Veto Around μ-Tracks
 (In THEIA: 5m, 2s)
 - Fiducial Volume Cut to Remove n from Surrounding Rock (In THEIA: 1.5m/2.5m)

Atmospheric-v-Background

- From Decay of π, Created in Atmosphere by Cosmic Rays
- $\pi \longrightarrow \mu + \nu_{\mu}$ $\mu \longrightarrow e + \nu_{e} + \nu_{\mu}$
- Possible NC or CC Interaction

- Solution:
 - If NC: Cut on C/S Ratio
 (Recoil Not Large Enough for Much Cherenkov Light)
 - If CC: Expected Background
 Rate Below DSNB Signal