Probing physics beyond the Standard Model with supernovae

Meng-Ru Wu (Institute of Physics, Academia Sinica)

The 3rd New Physics Opportunities at Neutrino Facilities Workshops: Astrophysical Neutrinos, SLAC, USA, July 11-13, 2023

Core-collapse supernovae

- ullet the death of massive stars $\gtrsim 8~M_{\odot}$
- ullet luminosity $\simeq 10^9 L_{\odot}$ for $\sim \mathcal{O}(100)$ days $(E_{\gamma} \sim 10^{49} ext{ erg})$
- explosion energy $\sim 10^{51}~{\rm erg} \equiv 1~{\rm B(ethe)}$
- \bullet strong MeV neutrino emission $\sim 10^{53}$ erg within ~ 10 s ($\sim 10^{58}$ neutrinos)

The high density ($\rho_c \gtrsim 10^{14} {\rm g~cm^{-3}}$) and temperature $T_c \gtrsim 30 {\rm MeV}$ of the proto-neutron stars make

them interesting astrophysical "laboratory" complementary to terrestrial experiments

SN neutrinos

Detected $\sim 20~\bar{\nu}_e$ in $\sim 10~\mathrm{s}$ from SN1987a

broadly consistent with SN theory, although "tensions" are claimed recently

[e.g., Olson & Qian 2021, 2022, Li+ 2023]

will see $\mathcal{O}(10^4-10^5)$ events from the next galactic SN! implication for bSM physics?

 $u_{e,\mu, au}$

Production of bSM particles in SNe

• collisional production (dark photons, axions, light dark fermions, sterile $\nu,...$)

$$\mathcal{L} \supset -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m_{A'}^2A'_{\mu}A'^{\mu}$$

[Adapted from J. Chang]

resonant conversion (eV – keV sterile neutrinos):

light ($\lesssim 100$ MeV) bSM particle that couple to $n, p, e^{\pm}, \mu^{\pm}, \gamma$ may be produced in PNS and escape

- ightarrow reduce available thermal energy carried by ${\sf SN} \nu$
- \rightarrow shorten SN ν emission duration

light ($\lesssim 100$ MeV) bSM particle that couple to $n, p, e^{\pm}, \mu^{\pm}, \gamma$ may be produced in PNS and escape

- ightarrow reduce available thermal energy carried by ${\sf SN} \nu$
- \rightarrow shorten SN ν emission duration

stellar envelope

shock

PNS

Raffelt's criteria: $L_{\rm new~particle} < L_{\nu} \sim 3 \times 10^{52}~{\rm erg/s}$

bSM particles

 $u_{e,\mu, au}$

- This is the most widely studied scenario that was applied to a wide class of bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.
- Raffelt's criterion was formulated in fact based on simulations valid for bSM particles that are created simply by collisional processes

- This is the most widely studied scenario that was applied to a wide class of bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.
- Raffelt's criterion was formulated in fact based on simulations valid for bSM particles that are created simply by collisional processes

Caveats exist for:

a. keV sterile neutrinos whose production depends on the adiabaticity of $V_{
m eff}$

$$\frac{\delta m^2}{2E_{\rm u}}\cos\theta_{\rm v} = V_{\rm eff}$$

for ν_{τ} – ν_{s} mixing

$$V_{\text{eff}} = \pm \sqrt{2}G_F n_b \left[-\frac{(1 - Y_e)}{2} + Y_{\nu_e} + Y_{\nu_{\mu}} + 2Y_{\nu_{\tau}} \right]$$

 \rightarrow feedback effect is important!

- This is the most widely studied scenario that was applied to a wide class of bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.
- Raffelt's criterion was formulated in fact based on simulations valid for bSM particles that are created simply by collisional processes

Caveats exist for:

a. keV sterile neutrinos whose production depends on the adiabaticity of $V_{
m eff}$

$$\frac{\delta m^2}{2E_{\nu}}\cos\theta_{\rm v} = V_{\rm eff}$$

for ν_{τ} – ν_{s} mixing

$$V_{\text{eff}} = \pm \sqrt{2}G_F n_b \left[-\frac{(1 - Y_e)}{2} + Y_{\nu_e} + Y_{\nu_{\mu}} + 2Y_{\nu_{\tau}} \right]$$

 \rightarrow feedback effect is important!

- This is the most widely studied scenario that was applied to a wide class of bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.
- Raffelt's criterion was formulated in fact based on simulations valid for bSM particles that are created simply by collisional processes

Caveats exist for:

a. keV sterile neutrinos whose production depends on the adiabaticity of $V_{
m eff}$

$$\frac{\delta m^2}{2E_{\nu}}\cos\theta_{\rm v} = V_{\rm eff}$$

for ν_{τ} – ν_{s} mixing

$$V_{\text{eff}} = \pm \sqrt{2}G_F n_b \left[-\frac{(1 - Y_e)}{2} + Y_{\nu_e} + Y_{\nu_{\mu}} + 2Y_{\nu_{\tau}} \right]$$

 \rightarrow feedback effect is important!

- This is the most widely studied scenario that was applied to a wide class of bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.
- Raffelt's criterion was formulated in fact based on simulations valid for bSM particles that are created simply by collisional processes

Caveats exist for:

b. self-interacting light dark sector

coupling among dark sector particles can be strong, which may lead to "self-trapping"

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \bar{\chi} (i\gamma^{\mu} \partial_{\mu} - m_{\chi}) \chi + g_D \bar{\chi} \gamma^{\mu} A'_{\mu} \chi$$

dark photon + dark fermion

- This is the most widely studied scenario that was applied to a wide class of bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.
- Raffelt's criterion was formulated in fact based on simulations valid for bSM particles that are created simply by collisional processes

Caveats exist for:

b. self-interacting light dark sector

coupling among dark sector particles can be strong, which may lead to "self-trapping"

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \bar{\chi} \left(i \gamma^{\mu} \partial_{\mu} - m_{\chi} \right) \chi + g_D \bar{\chi} \gamma^{\mu} A'_{\mu} \chi$$

dark photon + dark fermion

[Sung, Guo, MRW, 2102.04601]

- This is the most widely studied scenario that was applied to a wide class of bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.
- Raffelt's criterion was formulated in fact based on simulations valid for bSM particles that are created simply by collisional processes

Caveats exist for:

b. self-interacting light dark sector

coupling among dark sector particles can be strong, which may lead to "self-trapping"

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A'^{\mu} + \bar{\chi} \left(i \gamma^{\mu} \partial_{\mu} - m_{\chi} \right) \chi + g_D \bar{\chi} \gamma^{\mu} A'_{\mu} \chi$$

dark photon + dark fermion

[Sung, Guo, MRW, 2102.04601]

bSM v.s. SN: (ii) explosion energy bound

[Ebinger+, 1804.03182]

bSM v.s. SN: (ii) explosion energy bound

For bSM particles that can escape PNS but decay to SN particles, they should NOT deposit too much energy into ejecta or envelope

stellar envelope

shock

PNS

for dark photon

$$A' \rightarrow e^+ + e^-$$

b\$M particle decay to SM particles inside the stellar envelope

 $u_{e,\mu, au}$

bSM v.s. SN: (ii) explosion energy bound

For bSM particles that can escape PNS but decay to SN particles, they should NOT deposit too

 10^{-4}

 10^{-5} -

for dark photon

Beam dump

[A. Sung, H. Tu, MRW, 1903.07923]

 $18M_{\odot}$

 $10.8M_{\odot}$

bSM v.s. SN: (iii) additional SM signature

bSM particles can also decay to or produce SM photons or neutrinos that arrive Earth

ightarrow additional signature

stellar envelope

shock

PNS

for dark photon

 $A' \rightarrow e^+ + e^-$

$$e^+ + e^- \rightarrow \gamma' s$$

bSM v.s. SN: (iii) additional SM signature

bSM particles can also decay to or produce SM photons or neutrinos that arrive Earth

10¹⁰

 $m_4 = 200 \text{ MeV}, \sin^2 \theta_{\tau 4} = 10^{-7}$

SN

bSM v.s. SN: (iv) direct bSM signature

bSM particles that arrive directly at Earth may also be interesting

for axion & axion-like particle

 10^{-4}

SNO

[Lella+ 2306.01048]

if neutrinos interact with dark matter...

bSM v.s. SN: (v) interaction with DM

If $SN\nu$ interact with DM, they may:

a. upscatter the DM and produce "afterglow" events

[Lin, Wu, MRW, Wong, 2206.06864]

Light dark matter boosted by supernova neutrinos

For SN at the galactic center of the Milky Way:

- \rightarrow upscattered DM arrives the Earth at
- $\sim 10~{\rm days} \times [d/(8~{\rm kpc})][m_\chi/(10~{\rm keV})]^2 [E_\chi/(10~{\rm MeV})]^{-2}$ after the arrival of SN ν
- Time-dependent feature:

 t_p and t_{van} determined by the distance and m_χ , independent of $\sigma_{\chi\nu}$

(knowing $t_{\rm van}$ is useful in reducing the exposure time)

t: time relative to $\mathsf{SN} \nu$ arrival time

Light dark matter boosted by supernova neutrinos

For SN at GC or at the Large Magellanic Cloud, with different m_{χ} :

constraint exists with SN1987a if $\chi - e$ also interact!

$SN\nu$ boosted DM events and constraints

Consider total event numbers and background counts within an exposure time $t_{\rm exp}=\min(t_{\rm van},\ 35\ {\rm years})$ with Kamiokande from 1987-1996 and Super-Kamiokande from 1996 on

ightarrow can provide complementary constraint to models where $\sigma_{\chi
u} \lesssim 10^{-6} \sigma_{\chi e}$

(generalization to arbitrary SN location and $U(1)_{L_{\mu}-L_{\tau}}$ model in Lin+, 2307.03522)

bSM v.s. SN: (v) interaction with DM

[Carpio+ 2204.09650] $m_{\scriptscriptstyle X} = 10$ keV, $m_{\scriptscriptstyle V} (m_{\scriptscriptstyle \phi}) = 10$ MeV If SN ν interact with DM, they may also: 10° Fermion DM, vector mediator b. be deflected and lead to Scalar DM, scalar mediator Fermion DM, scalar mediator "neutrino echo" \widehat{L}_{t} 10-1 stellar envelope 10-2 DM halo 10⁶ 10⁷ 108 10⁹ 1010 10⁵ 10^{11} t [s] shock $u_{e,\mu, au}$ deflected $u_{e,\mu,\tau}$ **PNS** upscattered DM $u_{e,\mu, au}$

Can bSM physics simply lead to reduction of ${\rm SN}\nu$ event without affecting (much) SN evolution?

bSM v.s. SN: (iv) reduce decoupled SN ν

e.g., for eV sterile neutrinos:

if ν_e - ν_s mixing exists, ν_e and $\bar{\nu}_e$ can be converted to ν_s and $\bar{\nu}_s$ at $Y_e \simeq 1/3$ (behind the SN shock)

Neutronization burst and eV sterile neutrinos

MSW resonance condition for ν_e – ν_s mixing:

$$\frac{\delta m^2}{2E_{\nu}}\cos\theta_{\rm v} = V_{\rm eff} = \pm\sqrt{2}G_F n_b \left[\frac{3Y_e - 1}{2} + 2Y_{\nu_e} + Y_{\nu_{\mu}} + Y_{\nu_{\tau}} \right]$$

(+: neutrino, -: antineutrino, $Y_i = (n_i - n_{\bar{i}})/n_b$)

Neutronization burst and eV sterile neutrinos

[Tang, Wang, MRW, 2005.09168]

 ν -e scattering in detectors is the most important channel for probing light sterile neutrinos in neutronization burst for normal ordering (NO)

ν_e ; @10 kpc (NO)	DUNE ArCC	Hyper K eES	JUNO eES	JUNO pES
$3-\nu$ mixing	12.8	36.5	2.2	9.1
$\sin^2 2\theta_{14} = 10^{-3}, \ \Delta m_{41}^2 = 1 \text{ eV}^2$	10.3	11.3	0.7	3.3

(for IO, both CC and eES are important)

Neutronization burst and eV sterile neutrinos

[Tang, Wang, MRW, 2005.09168]

bSM v.s. SN: (iv) reduce decoupled SN ν

If non-Standard neutrino self-interaction exists, $SN\nu$ can be downscattered by $C\nu B$ on its way to Earth

However, when introducing NSI/NSSI, one expects that strong effect on SN dynamics, neutrino decoupling, and oscillations! [see e.g., Chang+ 2206.12426]

Summary & discussions

• Supernova provides a variety of means to probe/constrain bSM physics

Mechanism	applicability	Smoking-gun signature?	Feedback effect?	
Cooling	Very wide X		important	
Explosion	Need decay / reconversion	y i x i pamang		
Additional neutrinos or gammas	Need decay / reconversion	Maybe?	no	
Direct bSM signals	wide	Maybe?	depends	
Interaction with DM	X	V	depends	
Disappearing of SNv	restricted	X	no	

• For scenarios that affect neutrino emissions, detailed treatment of feedback effect on bSM particle production is critically important. Including them in simulations are needed to obtain robust results.

Summary & discussions

- Effects due to self-interaction among bSM particles (or neutrinos with strong non-standard self-interaction) need to be clarified
- Improved modelings on bSM particle production in thermal environment were carried in recent years, which can significantly affect the bounds
- How do they modify the subsequent evolution of (proto)neutron star and the remnant phase?

