Probing physics beyond the Standard Model
with supernovae

Meng-Ru Wu (Institute of Physics, Academia Sinica)

The 3rd New Physics Opportunities at Neutrino Facilities Workshops:
Astrophysical Neutrinos, SLAC, USA, July 11-13, 2023

7/ NSTC BRHERRNEES NC'B

S
E: 5 58 B P B 58 B
o, National Science and Technology Council

" INSTITUTE OF PHYSICS, ACADEMIA SINICA




SN1987a  (From AAO website)

Core-collapse supernovae

e the death of massive stars > 8 M

e luminosity ~ 10° Ly for ~ O(100) days
(E, ~ 10% erg)

e explosion energy ~ 10°! erg = 1 B(ethe)

e strong MeV neutrino emission ~ 10°3 erg

within ~ 10 s (~ 10°® neutrinos) ~ 3000 km

-

The high density (p. = 10**g cm~3) and i
temperature T, 2 30 MeV of the

proto-neutron stars make
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SN neutrinos [J. Heise PhD Thesis (2002)]
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will see O(10* — 10°) events from the next galactic SN!

shock

implication for bSM physics?

PNS

Ve,u,r




Production of bSM particles in SNe

e collisional production (dark photons, axions, light dark fermions, sterile v,...)
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e resonant conversion (eV — keV sterile neutrinos):
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bSM v.s. SN: (i) excessive cooling

[Chang+ 1611.03864]

light (< 100 MeV) bSM particle &
that couple to n, p, e*, u™, v may
be produced in PNS and escape
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— reduce available thermal energy
carried by SNv
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— shorten SN emission duration
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Raffelt’s criteria: Lyew particle < Ly ~ 3 X 10°2 erg/s

bSM particles
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bSM v.s. SN: (i) excessive cooling
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bSM v.s. SN: (i) excessive cooling

e This is the most widely studied scenario that was applied to a wide class of
bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.

e Raffelt’s criterion was formulated in fact based on simulations — valid for bSM
particles that are created simply by collisional processes
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bSM v.s. SN: (i) excessive cooling

e This is the most widely studied scenario that was applied to a wide class of
bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.

e Raffelt’s criterion was formulated in fact based on simulations — valid for bSM
particles that are created simply by collisional processes

Caveats exist for:

b. self-interacting light

dark sector _ -
. free-streaming  diffusion
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coupling among dark sector particles
can be strong, which may lead to
“self-trapping”
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bSM v.s. SN: (i) excessive cooling

e This is the most widely studied scenario that was applied to a wide class of
bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.

e Raffelt’s criterion was formulated in fact based on simulations — valid for bSM
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bSM v.s. SN: (i) excessive cooling

e This is the most widely studied scenario that was applied to a wide class of
bSM particles, including axions, dark mediators, keV sterile neutrinos, ... etc.

e Raffelt’s criterion was formulated in fact based on simulations — valid for bSM
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if bSM particles can decay to or be converted back to SM particle...



bSM v.s. SN: (ii) explosion energy bound

[Ebinger+, 1804.03182]
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bSM v.s. SN: (ii) explosion energy bound

[A. Sung, H. Tu, MRW, 1903.07923
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bSM v.s. SN: (ii) explosion energy bound

for dark photon

For bSM particles that can escape 104
PNS but decay to SN particles, 58
they should NOT deposit too p—
much energy into ejecta or o
envelope
10-8
[See also Caputo+ 2201.09890, which applies 10-9
to extreme case of low-energy SNe (0.1B) for axion]
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bSM v.s. SN: (iii) additional SM signature

bSM particles can also decay to . - - __[DeRocco+1901,08596
or produce SM photons or -
neutrinos that arrive Earth N Gooling
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bSM v.s. SN: (iii) additional SM signature

bSM particles can also decay to
or produce SM photons or
neutrinos that arrive Earth

— additional signature

for O(100) MeV sterile neutrinos
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bSM v.s. SN: (iv) direct bSM signature

bSM particles that arrive directly [Lella+ 2306.01048]
at Earth may also be interesting -
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If neutrinos interact with dark matter...



bSM v.s. SN: (v) interaction with DM

If SNv interact with DM, they may:

a. upscatter the DM and produce “afterglow” events [Lin, Wu, MRW, Wong, 2206.06864]

Supernova
neutrino (v)
burst

Boosted dark matter (y)
afterglow

stellar envelope

DM halo

Supernova
burst
shock
Ve,u,r
@

upscattered DM
e




Light dark matter boosted by supernova neutrinos

For SN at the galactic center of the Milky Way:

— upscattered DM arrives the Earth at

~ 10 days x[d/(8 kpc)][m, /(10 keV)]?[E, /(10 MeV)]~? after the arrival of SNv

e Time-dependent feature:

tp and ty,, determined
by the distance and m,,
independent of o,,

(knowing tyay is useful
in reducing the exposure
time)

d®, /dT, [MeV~! cm 2 s7']

[Lin, Wu, MRW, Wong, 2206.06864]
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103 105 107

t: time relative to
SNv arrival time



Light dark matter boosted by supernova neutrinos

For SN at GC or at the Large Magellanic Cloud, with different m,:

T, =10 MeV and 0,, =10 ¢cm >

7 — m,=1eV — GC

‘_I"_I -0 — m, =1keV —= | MC
. —~ e, —_— m, =1MeV
T, 1024 =
g ;‘: GC: a SN exploded in the MW center
T'> 1073 - c];i LMC: a SN exploded in the LMC center
B] 9
= '~ Xl
le 1078 - \I E I
-y |
I'GT 10—13 | + -:_
~ i |

10°18 i L

106  10% 102  10° 102 104
s [yr] [Lin, Wu, MRW, Wong, 2206.06864]

constraint exists with SN1987a if xY — e also interact!



SNv boosted DM events and constraints

Consider total event numbers and background counts within an exposure time
texp =Min(tvan, 35 years) with Kamiokande from 1987-1996 and
Super-Kamiokande from 1996 on

texp == min(tvam tcut)
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— can provide complementary constraint to models where o, S 10_60'X6

(generalization to arbitrary SN location and U(1)r,, — 1, model in Lin+, 2307.03522)



bSM v.s. SN: (v) interaction with DM

[Carpio+ 2204.09650]
m, =10 keV, my (my) =10 MeV

— Fermion DM, vector mediator

b. be deflected and lead to ~—- Scalar DM, scalar mediator
M ! TRt I RS 51 D A Fermion DM, scalar mediator
neutrino echo

If SNv interact with DM, they may also: 14
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Can bSM physics simply lead to reduction of SN event without
affecting (much) SN evolution?



bSM v.s. SN: (iv) reduce decoupled SNv

[MRW+, 1305.2382]
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Neutronization burst and eV sterile neutrinos

MSW resonance condition for v,—, mixing:

om? 3Y, —1
Yo 0y = Ver = £V2G pry [ 5 T2 4+, + YVT]
(+: neutrino, —: antineutrino, Y; = (n; — n;)/nyp)

[Tang, Wang, MRW, 2005.09168]
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Neutronization burst and eV sterile neutrinos

NO; E, = 12.25 MeV
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[Tang, Wang, MRW, 2005.09168]

NO; E, = 12.25 MeV
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v-e scattering in detectors is the most important channel for probing light
sterile neutrinos in neutronization burst for normal ordering (NO)

Ve; @10 kpe (NO) DUNE ArCC | Hyper K eES | JUNO eES | JUNO pES
3-v mixing 12.8 36.5 2.2 9.1
sin® 2014 = 1079, Am3, = 1 eV? 10.3 11.3 0.7 3.3

(for 10, both CC and eES are important)




Neutronization burst and eV sterile neutrinos

NO; E, =12.25 McV

Py —p )=

[Tang, Wang, MRW, 2005.09168]
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bSM v.s. SN: (iv) reduce decoupled SNv

[Shalgar+1912.09115]
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Summary & discussions

e Supernova provides a variety of means to probe/constrain bSM physics

. L Smoking-gun o
Mechanism applicability signature? Feedback effect”
Cooling Very wide X important
Explosion Need decgy/ X Perhaps not
reconversion
Additional
neutrinos or Need decqy/ Maybe? no
reconversion
gammas
Direct bSM signals wide Maybe? depends
Interaction with DM X V depends
DIEEIPEEEIIE) O restricted X no
SNv

e For scenarios that affect neutrino emissions, detailed treatment of feedback

effect on bSM particle production is critically important. Including them in
simulations are needed to obtain robust results.



Summary & discussions

e Effects due to self-interaction among bSM particles (or neutrinos with strong
non-standard self-interaction) need to be clarified

e Improved modelings on bSM particle production in thermal environment
were carried in recent years, which can significantly affect the bounds

e How do they modify the subsequent evolution of (proto)neutron star and
the remnant phase?

deflected v, ;, -
upscattered DM

\ Ve,u,r
\ bSM particles?

/
Vs (M5 ~ O(eV)) >

particle decay to SM particles
inside or outside the stellar envelope
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