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FIG. 1. Angle-averaged shock radii (top) and PNS radii (bottom; defined at ⇢ = 1011 g cm�3) vs. post-bounce time for the
indicated models. Black solid lines: Models noFC (no flavor conversions). Colored solid lines: Instantaneous FFCs for ⇢ < ⇢c

as labelled in the legend. The unsteady motion of the average shocks with contraction and expansion phases is caused by the
violent large-scale convective mass flows in the neutrino heated gain layer behind the CCSN shock. The sudden growth of rshock

(small at ⇠100ms for M9.0-2D and prominent at ⇠70ms for M11.2-2D and at ⇠220ms for M20.0-2D) signals a decrease of
mass accretion rate due to the arrival of the Si/O interface. For the noFC models, we also show the angle-averaged gain radius
(dashed black) and the mean radii for ⇢ = 109 and 1010 g cm�3 (dash-dotted and dotted black lines lines, respectively), all
smoothed with 10ms running averages. For the 9.0 and 11.2M� progenitors, FFCs support an earlier onset of the explosion,
whereas for 20.0M� they thwart it and the shock recedes even more rapidly.

els. We further assume that FFCs lead to complete flavor
equilibrium under the constraints of lepton number con-
servation, in particular also of electron neutrino lepton
number, as well as energy and total momentum conser-
vation, and with respecting the Pauli exclusion principle.
Our algorithm, defined in Eqs. (9), (10), (14), and (15)
of Ref. [27], is applied after each time step in each spa-
tial cell where ⇢ < ⇢c. Some recent studies have focused
on the asymptotic FFC state [30]. We stress that our
recipe leads to a converged state: it does not change if
the algorithm is applied twice.

Our simulations were evolved in 1D until 5ms pb (post
bounce) and then mapped onto a 2D polar coordinate
grid consisting of 640 logarithmically spaced radial zones
and 80 equidistant lateral ones. The central 2 km core
was still calculated in 1D, permitting larger time steps,
yet having negligible influence on the hydrodynamic evo-
lution. During the mapping, a random cell-by-cell per-
turbation of 0.1% of the local density was applied to seed
the hydrodynamic instabilities, which otherwise would
develop only due to uncontrolled numerical noise.

We selected three progenitors with di↵erent zero-age
main-sequence masses. One is the 20M� model [31] that
we used in our previous 1D study [27]. In addition, we
investigated a 9M� [32] and 11.2M� model [33]. The
9M� star consistently explodes in multi-D simulations,
although in some more quickly and about twice as ener-

getically [6, 8, 34] than in others [29, 35, 36]. The 11.2M�
model is less ready to blow up, exhibiting a delayed and
slow onset of shock expansion [37–40]. In contrast, the
20M� star failed to explode in most multi-D simulations
[29, 35, 41, 42].
The convention for naming our simulations follows our

previous one [27], supplemented with a numerical value
for the stellar mass: M9.0-2D-xxx, M11.2-2D-xxx, and
M20.0-2D-xxx. Here xxx is a placeholder for either noFC
(“no flavor conversion”) or for the FFC threshold density.
We implement ⇢c = 109 g cm�3, ..., 1014 g cm�3 in steps
of factors of 10, corresponding to xxx = 1e09, ..., 1e14.
Results.—In our previous 1D simulations [27] of the

20M� progenitor we found that FFCs caused a faster
and stronger shock contraction than without FFCs for all
threshold densities ⇢c and for all times (except for ⇢c =
1010 g cm�3 during a short period of about 70ms around
100ms pb). This finding suggested that FFCs tend to
hinder shock revival and neutrino-driven explosions, and
this conclusion is confirmed in 2D for the 20M� star
(Fig. 1).
However, our 9 and 11.2M� progenitors demonstrate

that this is not generally the case (Fig. 1). Including
FFCs, in particular for ⇢c = 109, 1010, 1011 g cm�3, yields
significantly earlier explosions. The main explanation is
a higher net heating rate per nucleon (qgain) for at least
⇠100ms pb. The increased qgain causes a persistently

Flavor mixing is estimated
to significantly alter CCSN
heating rates—and thus
the explosion dynamics.

Ehring, Abbar, Janka, Raffelt, & Tamborra, 2305.11207
Also see:
Ehring et al., PRD (2023)
Nagakura, PRL (2023) 
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FIG. 1. The iconic textbook example of a Wigner function for
a Schrödinger cat state. The bell shapes represent the “alive” and
“dead” possible states for the “cat” and the oscillations between them
indicate the quantum coherence between these states (i.e., the classic
“both alive and dead” statement). A similar Wigner function without
these interference terms would represent a state with a classical coin
toss probability of being either alive or dead but not both. The presence
of the interference terms indicates that this Wigner function represents
a state that is in both states (“alive and dead”) at the same time (a
superposition).

These characteristic functions [27], by satisfying the
Stratonovich–Weyl correspondence [28], are informationally
complete SU(N )-symmetric, spin-j descriptions of finite-
dimensional quantum states (“qudits”) [29–32]. This work is
in contrast to that proposed by Wootters [33] and others for
generating characteristic functions of N -dimensional discrete
systems. There, the motivating mathematics are built around
analyzing “systems having only a finite number of orthogonal
states. The ‘phase space’ for such a system is taken to
be not continuous but discrete.” [33]. The phase space
generated by such generalized coherent states is continuous
in its parametrization (see Refs. [34,35]), allows for Wigner
functions to be generated by the methodology given in
Ref. [36] (the expectation value of an appropriately normalized
displaced general parity operator), can completely represent
product Hilbert spaces of qudits (thus producing phase-space
signatures of entanglement), and gives a method for visualizing
said functions that is equivalent to that done for symmetric sub-
space representations, which we now discuss in more detail.

II. BACKGROUND

While it has been known for a long time that parity
displacement could be done for continuous systems [16,37],
following much work on the use of Wigner functions of dis-
crete systems [17,18,23–27,30–33,38–44], it has only recently
been proposed that any quantum system’s Wigner function can
be written as the expectation value of a displaced and/or rotated
generalized parity operator [36]. Mathematically this can be
expressed as

Wρ(!) = 〈U (!)"U †(!)〉ρ
= Tr[ρ{U (!)"U †(!)}], (1)

where W is the Wigner function and ! is the set of parameters
over which displacement or rotations are defined (typically this
would be position and momentum), ρ is the density matrix,
U (!) is a general displacement or rotation operator or
collection of operators, and "’s definition is motivated by
the usual parity operator. The conventional Wigner function
in position and momentum space is obtained if U is set to the

displacement operator that defines coherent states |α〉 from the
vacuum state |0〉 according to D(α)|0〉 = |α〉, and the operator
" is defined to be twice the usual phase-space parity operator
so that "|α〉 = 2| − α〉 [45].

For a given system the choice of U (!) and " is not
unique, but in Ref. [36] it was stipulated that a distribution
Wρ($) over a phase space defined by the parameters $
is a Wigner function of ρ if there exists a kernel %($)
[which we show can be written as a similarity transform
with respect to a “displacement” of a parity-like operator,
i.e., %($) = U (!)"U †(!)—and the Wigner function is the
expectation value of this similarity-transformed operator]
satisfying the following restricted version of the Stratonovich–
Weyl correspondence (reproduced verbatim from Ref. [36]):

S-W.1 The mappings Wρ(!) = Tr [ρ %(!)] and ρ =∫
! Wρ(!)%(!)d! exist and are informationally complete.

Simply put, we can fully reconstruct ρ from Wρ(!) and vice
versa.1

S-W.2 Wρ(!) is always real valued which means that
%(!) must be Hermitian.

S-W.3 Wρ(!) is “standardized” so that the definite integral
over all space

∫
! Wρ(!)d! = Tr ρ exists and

∫
! %(!)d! =

1l.
S-W.4 Unique to Wigner functions, Wρ(!) is self-

conjugate; the definite integral
∫
! Wρ ′ (!)Wρ ′′ (!)d! =

Tr [ρ ′ρ ′′] exists. This is a restriction of the usual Stratonovich–
Weyl correspondence.

S-W.5 Covariance: Mathematically, any Wigner function
generated by “rotated” operators %(!′) (by some unitary trans-
formation V ) must be equivalent to rotated Wigner functions
generated from the original operator [%(!′) ≡ V %(!)V †]—
i.e., if ρ is invariant under global unitary operations then so is
Wρ(!).

If we define U (!) as an element of a special unitary (SU)
group that acts as a displacement or rotation and " as an
appropriately normalized identity plus a traceless diagonal
matrix (i.e., an element of the Cartan subalgebra of the
appropriate group) then, from Ref. [36], Eq. (1) is sufficient
to generate Wigner functions for any finite-dimensional,
continuous-variable, quantum system. We note that, beyond
satisfying the Stratonovich–Weyl correspondence, we have
yet to fully determine the level to which this definition is
constrained. Because " performs the same role as parity does
in the standard Wigner function, we refer to it as an extended
parity.

III. THE SCHEME

In this work we present a procedure for the measurement
and reconstruction of the quantum state for a series of qubits
from two different Wigner functions that both satisfy the
above restricted Stratonovich–Weyl correspondence. We start
by considering a Wigner function where the extended parity
operator is defined with respect to the underlying group
structure of the total system. We then proceed to investigate

1For the inverse condition, an intermediate linear transform may be
necessary.
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Schr�̈�dinger cat states

Rundle, Mills, Tilma, Samson, Everitt, PRA 2017

Fig. 13, can be interpreted as a classical probability distribu-
tion in phase space, with uncertainties in x and p reflecting
the photon number and phase fluctuations of the coherent
state. Figure 16(b) presents the experimental Wigner function
of the n ¼ 3 Fock state prepared by QND projective mea-
surement, then reconstructed by our cavity QED-adapted
tomographic procedure. It consists of a set of circular ripples
centered at phase space origin. Its interfering features,
displaying negative values, are distinctive of this field
state ‘‘quantumness.’’ The central symmetry of this Wigner
function reveals that a Fock state has a complete phase
indeterminacy.

VI. SCHRÖDINGER CAT STATES OF LIGHT AND
DECOHERENCE STUDIES

By describing how we count and manipulate photons in a
cavity, I have so far emphasized the ‘‘particle aspect’’ of light.
As recalled above, however, light is also a wave. Which of the
particle or the wave aspect manifests itself depends upon the
kind of experiment which is performed on the field. Let us
describe now experiments in which the wave features of
the field stored in the cavity is essential. This will lead to
the description of photonic Schrödinger cats and to decoher-
ence experiments.

At this stage, it is appropriate to recall Schrödinger’s
thought experiment (Schrödinger, 1935). The Austrian phys-
icist imagined that a large system, a cat for instance, was
coupled to a single atom, initially prepared in an excited state
spontaneously decaying into a ground state by emitting a
photon (or a radioactive particle). This emissionwas triggering
a lethal device killing the cat. After half the lifetime of the
excited state, the atom has evolved into a superposition of two
states, one of which would be associated with the dead cat and
the other to the live cat (Fig. 17). At this point, the atom and the
cat would be entangled and the cat suspended between life and
death. In our version of this experiment, we have a single atom
in a superposition of two states and this atom controls the fate
of a coherent field containing several photons (our Schrödinger
cat) which takes two different phases at once, one that we can
call ‘‘alive’’ and the other ‘‘dead.’’ The way to perform this
experiment was initially proposed in a paper written in 1991

together with our Brazilian colleagues Luiz Davidovich and
Nicim Zagury (Brune et al., 1992). A similar proposal for the
preparation of Schrödinger cat states of light in the optical
domain had been made earlier in another context (Savage,
Braunstein, and Walls, 1990).

Our method employs again the Ramsey interferometer. It
starts with the preparation of a coherent field in the cavity,
whose Wigner function is a Gaussian [Fig. 16(a)]. A single
nonresonant atom is then prepared in a coherent superposition
of two states, an atomic Schrödinger kitten, as I have already
called it. This atom crosses the cavity and each of its two
components shifts the phase of the field in opposite direction
by a simple dispersive index effect. Here again, we take
advantage of the huge coupling of Rydberg atoms to micro-
waves which makes a single atom index large enough to have
a macroscopic effect on the field phase. At the cavity exit, the
atom and the field are entangled, each atomic state being
correlated to a field state with a different phase (the phase
difference being close to 135" in a typical experiment). We
can consider that the field with its Gaussian Wigner distribu-
tion centered at a point in phase space is a meter used to
measure the atom’s energy. After the atom has been exposed
to the second Ramsey pulse and detected, there is no way to
know in which state the atom crossed the cavity and the field
collapses into a Schrödinger cat superposition. In other words,
the atomic Schrödinger kitten has produced a photonic
Schrödinger cat which contains several photons on average.

FIG. 16 (color). Experimental Wigner functions represented in 3D and 2D: (a) coherent state with hni ¼ 2:5; (b) n ¼ 3 Fock state. From
Haroche, Brune, and Raimond, 2013.

FIG. 17 (color). The Schrödinger cat thought experiment. From
‘‘Science et Vie Junior.’’

1094 Serge Haroche: Nobel Lecture: Controlling photons in a box . . .

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013

S. Haroche via Science et Vie Junior
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When neutrinos forward scatter on background particles,
they acquire in-medium effective masses.



Neutrinos contribute to their own background. As a result,
forward scattering changes oscillations in a nonlinear way.

Collective
oscillations
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Absorption and momentum-changing scattering
cause collisional decoherence.
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i (@t + p̂ · @r) ⇢ = [H, ⇢] + iC

Quantum kinetic equation for density matrix ρ(t, r, p):

Particle advection Flavor
mixing

Collisions

Dolgov, SJNP (1981); Stodolsky, PRD (1987); Nötzold & Raffelt, NPB (1988); Pantaleone, PLB (1992); Sigl & Raffelt, NPB (1993);
Raffelt, Sigl, & Stodolsky, PRL (1993); Raffelt & Sigl, AP (1993); Loreti & Balantekin, PRD (1994); Yamada, PRD (2000);

Friedland & Lunardini, PRD (2003); Strack & Burrows, PRD (2005); Cardall, PRD (2008); Volpe, Väänänen, & Espinoza, PRD (2013);
Vlasenko, Fuller, & Cirigliano, PRD (2014); Kartavtsev, Raffelt, & Vogel, PRD (2015); Stirner, Sigl, & Raffelt, JCAP (2018);

Nagakura, PRD (2022); Johns, 2305.04916; plus many others



NOAA Geophysical Fluid Dynamics Laboratory 

Compare to climate modeling…

Without hydrodynamics, this field would not have gotten far.
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Systems relax through information loss. Where does the information go?

v  The environment
         Classical: Particles bouncing off container walls. Blackbody radiation.
         Quantum: Decoherence (in the word’s most common usage).

v  Many-body correlations
         Classical: H-theorem in Boltzmann gases.
         Quantum: Thermalization in ultracold atomic gases.

v  Small scales
         Classical: Collisionless relaxation in galaxies & plasmas. Turbulence.
         Quantum: Mixing equilibration.

Varieties of equilibration
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dp Tr [⇢p log ⇢p + (1� ⇢p) log (1� ⇢p)]

Spatially coarse-grained
density matrix

To formulate the thermodynamics of oscillating neutrinos,
we need to define an appropriate entropy:
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S = �
Z

dp Tr [⇢p log ⇢p + (1� ⇢p) log (1� ⇢p)]

Spatially coarse-grained
density matrix

To formulate the thermodynamics of oscillating neutrinos,
we need to define an appropriate entropy:

We then appeal to two physical principles: scale separation & ergodicity.

Second law of thermodynamics
S is maximal at equilibrium,
subject to conservation laws.
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Equilibrium distribution of collisionless
neutrino matter:
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Equilibrium distribution of collisionless
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Third law of thermodynamics
The unique (S = 0) ground state:
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First law of thermodynamics

with W and Q appropriately defined.
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Ĥ · P̂

⌘

+
1

Nf
�H0P0 +

1

2
�| ~H||~P |Ĥ · P̂
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From here it’s easy to show that quantum-adiabatic effects
(MSW, spectral swaps, MNR) are adiabatic processes in
the thermodynamic sense.
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We take ! ! :6 in what follows. Turning to the solu-
tions, we take a neutrino density for each species, nv !
18"MeV#3, about 1=2 the thermal density for a temperature
of 7 MeV. Thus our picture is that roughly half of the
neutrinos fall into the valence group. Then the unit of
energy in our scaled equations is Es ! 2

!!!

2
p

n"GF $ 5%
10&10 MeV (corresponding to a distance parameter of $
:04 cm). We take an average " energy of 17 MeV. The "e
oscillation parameter, #0

1 ! $m2
e&%=2E", in units of Es, is

now #0
1 $ 6% 10&9, for $m2

e&% ! 10&4 eV, a number
quite unfriendly to computations since there are oscilla-
tions in the key flavor-changing densities at periods of
order E&1

s . We take #0
2 ! 50#0

1. For a mass density of 8%
1010 gc&3 and with Ye ! :4, we have ne=n" $ 8.

In Fig. 1 we show a solution to the equations with
artificially large values of the oscillation parameters, #0

1 !
10&5, and #0

2 scaled to #0
1 as described above. We take

initial conditions that correspond to six groups of equal
density, with "e, !"e moving downward and "&;%, " !&; !%

moving upward. This initial condition translates into initial
values, x3 ! !x3 ! x9 ! !x9 ! &1=3; x6 ! !x6 ! 2=3; and
y3 ! !y3 ! y9 ! !y9 ! 1=3; y6 ! !y6 ! &2=3, with all
other initial values equal to zero.

From the plots of Fig. 1 we see that strong mixing sets in
shortly after a time t ! "#0

1#&1=2, with the down-moving
states at some moments nearly totally occupied with "&;%.
Not exactly in sync with the down-moving mixing, the up-
going states become up to 50% occupied with "e’s,
although the percentage fluctuates wildly with time. We
observe that the total number of "e’s and !"e’s is not

constant in the above, although their difference is constant.
Owing to the perfectly symmetrical initial condition, the
plots for antineutrinos are identical. These results are a
prototype for all that follows; for smaller values of #0

1, the
time required for big mixing of the down-moving states
follows the t ! "#0

1#&1=2 rule fairly closely as the oscilla-
tion parameters are reduced.

In Fig. 2 we show the case #0
1 ! 10&7 (still 16 times our

target value). The flipping in the up-moving states occurs
after roughly 5000="2'# periods of the rapid oscillation
rate5 2

!!!

2
p

n"GF. Comparing Fig. 1 with Fig. 2, where there
is a factor of 100 difference in the oscillation parameters,
and a factor of 10 difference in the time spans, we see good
confirmation of the t ! "#0

1#&1=2 condition for mixing.
Therefore it appears that we can extrapolate reliably to
the physical value of #0. Doing so, we obtain a time of
approximately 2:4% 104 in our fast units, giving a mixing
distance of around 1000 cm.

In the calculation leading to Fig. 3 we take a 5% "e & !"e
surplus in the initial state, again for the case #0

1 ! 10&7.
We see from Fig. 3 that in this case one-half of the up-
going states become occupied with "e, !"e, as in the pre-
vious cases, but more steadily, whereas now the occupancy
of the down-moving states is changed hardly at all. There is
only a tiny difference in the behavior of the neutrino and
antineutrino plots in this case, despite the fact that major
features are driven by the small initial asymmetry.

In a third situation we change the rules so that the !"e’s
are placed in the upward beam. Since in typical supernova
calculations the !"e are intermediate between the !"&;%’s and
the "e’s, both in energy spectrum and in angular distribu-

200 400 600 800
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0.6

0.8

1

Pe

FIG. 1. Electron neutrino density in the up-moving beam (light
curve) and in the down-moving beam (heavy curve) as a function
of time, as expressed as a fraction Pe of the original density n".
The unit of time is the fast scale, as defined in text, ts !
"2

!!!

2
p

GFn"#&1. In this calculation the oscillation parameters
have been taken to be 1:6% 103 times as big as present oscil-
lation parameters demand, with #0

1 ! 10&5, #0
2 ! 50#0

1, in order
to better show features of the curve and to exhibit the scaling,
discussed in text, which roughly relates these curves to those of
Fig. 2
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FIG. 2. The same as Fig. 1, except that each oscillation pa-
rameter is reduced by a factor of 100, so that #0

1 ! 10&7, etc. The
unit of time is again the short time ts, which is the oscillation
period of the flavor-non-diagonal operators. Comparing with
Fig. 1 we see the "#0#1=2 scaling discussed in text.

5Luckily for our plots, this very rapid oscillation surfaces only
in the expectations of the flavor-off-diagonal density operators.
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reaching its original vertical position, and then starts over
again. The maximum potential energy is 2! because the
energy is normalized to the total energy per ! and because
there are equal numbers of neutrinos and antineutrinos, i.e.,
two particles per !.

Reducing the mixing angle has the effect of reducing the
oscillation amplitude for the normal hierarchy, whereas it
increases logarithmically the duration of the ‘‘plateau
phases’’ for the inverted hierarchy. For quantitative dis-
cussions of the isotropic case in terms of the pendulum
analogy see Ref. [26].

B. Half-isotropic case

Next we consider the same example, but assume a large
degree of anisotropy where only one half space of momen-
tum modes is occupied. In Fig. 3 we show, in the upper
panels, the evolution of Sz0. Moreover, we show the length
of the overall polarization vector, jS0j, as a thin dashed
line. Both in the normal hierarchy (left) and the inverted
hierarchy (right), an equal mixture of the two flavors is
quickly achieved. In the isotropic case the length of P0 and
!P0 is conserved and that of S0 is approximately conserved,
up to corrections of order !="! 1. Here, the lengths of
P0, !P0, and S0 shrink to zero, reflecting kinematical deco-
herence. Of course, Sz0 can become small or zero without
its length shrinking as during the first swing in the inverted-
hierarchy case. It is the length of the polarization
vector, not its z component, that is a measure of decoher-
ence. Of course, in the normal hierarchy, S0 performs
only small-excursion oscillations so that a significant
change of its z component can be achieved only by a
change of its length. In this case jS0j and Sz0 are almost
identical.

The evolution of S0 was also illustrated in Fig. 1 where
we showed its trajectory in the x–z plane. For our chosen
geometry where B is in the x–z plane, Sy0 " 0 at all times.
For the inverted hierarchy (bottom) we indicate the
isotropic-gas trajectory with diamonds at time intervals
of 0.01 (2#=$) where the motion starts in the vertical
position. In the half-isotropic case, the particle number
polarization vector S0 spirals in to a position close to the
origin. The final offset is very small and depends on the
magnitude of !=" for which we have chosen 10#5. In the
normal hierarchy (top), the isotropic-case motion is a
small-excursion harmonic oscillation between the dotted
lines. In the half-isotropic case, the evolution begins from
the vertical position. A full oscillation back to the vertical
position is performed before the shrinking of S0 becomes
noticeable.

In the lower panels of Fig. 3 we show the evolution of the
different energy components. The simpler case is the in-
verted hierarchy (right) where the ‘‘potential’’ and ‘‘ki-
netic’’ energies begin to oscillate as in the isotropic case of
Fig. 2. On the time scale of a few bipolar oscillation
periods, the two components essentially equipartition,
although asymptotically a small offset remains that de-
pends on !=". Moreover, the neutrino-neutrino energy
(‘‘kinetic energy’’) now develops a nonvanishing flux
term E1 " #"D2

1=4 that inevitably is negative.
The normal hierarchy (left) is initially similar in that E!

and E" oscillate as for a pendulum, even though this
motion is not visible on the scale of the plot. As decoher-
ence sets in, a qualitatively different mode of behavior
obtains in that the neutrino-neutrino energy E" is domi-
nated almost entirely by the negative E1 whereas E0 now is
subdominant. All individual polarization vectors of all
modes start aligned with the z direction, i.e., almost aligned
with the force direction since the mixing angle is small.
Therefore, the initial E! is near its minimum. If the overall
polarization vector S0 is supposed to shrink, the individual
polarization vectors must develop significant deviations
from each other and thus the potential energy must in-
crease. Energy conservation then dictates that E" becomes
negative.

One important conclusion is that the angular dependence
of the neutrino-neutrino interaction alone is not enough to
cause kinematical decoherence, but its absolute sign is also
crucial. IfE1 were not negative, energy conservation would
prevent significant decoherence for the normal hierarchy.
Changing this sign in a numerical example indeed reveals
the absence of decoherence for the normal hierarchy, but
no significant change of behavior for the inverted case. In
the real world there is no choice about this sign. It derives
from the negative sign of the spatial part in the neutrino
current-current interaction, i.e., it is the negative sign in-
herent in the Lorentz metric. From the equations of motion
in the form Eq. (40) one would have never guessed that the
absolute sign of the term proportional to D1 plays a crucial
role.

 

FIG. 3. Same as Fig. 2, now for a half-isotropic neutrino gas.
Top: polarization vector Sz0 (solid line) and the length jS0j
(dashed line). Bottom: energy components E! (solid line), E" "
E0 $ E1 (dashed line), E0 (thin dotted line) and E1 (thin dotted-
dashed line).
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vanish, Pnð0Þ ¼ P̄nð0Þ ¼ 0 for n > 0, so the system starts
from a spatially constant configuration. Numerically, we fix
the parameters in Eq. (9) at μ ¼ 50, ω ¼ 1, θ ¼ 10−2, and
we consider inverted mass hierarchy Δm2 < 0, for which
the system is unstable in the homogeneous case [7]. In
order to get stable numerical results, we follow the
evolution of the first N ¼ 20 Fourier modes. We also
solved the equations with larger values of N, but the results
for the lower modes do not change significantly. In Fig. 1,
we show the flavor evolution of the z component of the
polarization vector P0;z in the homogeneous case with
ϵ ¼ 0 (dotted curve). In this case, as is known, the system
oscillates, converting coherently pairs νeν̄e ↔ νxν̄x and
behaving as a flavor pendulum with a frequency [7]

κ ¼
ffiffiffiffiffiffiffiffiffi
2ωμ

p
: (13)

In Fig. 1 are also shown the evolution when we switch on
an inhomogeneity in the matter potential with ϵ ¼ 10−7

(dashed curve) and ϵ ¼ 10−3 (continuous curve), respec-
tively. In this case we have considered as wave number of
the fluctuation k0 ¼ κ. Notice that even for a very small
inhomogeneity the coherent behavior of the pendulum is
broken after some oscillation periods and the system
decoheres towards flavor equilibrium. As expected,
by increasing the value of the inhomogeneity seed, this
flavor decoherence is reached earlier. This effect of flavor
equilibrium is observed in P0;z, that represents the flavor
content averaged over all the space. Indeed, Pzðx; tÞ shows
large space fluctuations, due to the interference of various
contributions of higher harmonics kn. We expect that
considering a more realistic multimode system, with the
matter term seed containing several Fourier modes k0, it
would easily decohere also in the coordinate space.

Figure 2 is a different way to see this phenomenon. We
compare the evolution of the trajectory of the zero mode
polarization vector P0 in the x-z plane for the homogeneous
case (left panel) with the case of an inhomogeneous seed
with ϵ ¼ 10−3 (right panel). While in the first case the
polarization vector performs stable pendular oscillations,
keeping its modulus constant, in the inhomogeneous case
after a few periods, its length shrinks to zero, meaning that
the flavor content averaged over the space coordinate is
equal for two ν species.
In Fig. 3, we fix ϵ ¼ 10−3 and we illustrate how

changing the wave number of the matter perturbation
affects the onset of the decoherence. With the definition
k0 ¼ cκ, the continuous dashed and dotted curves corre-
spond to c ¼ 1, c ¼ 102, and c ¼ 10−2, respectively. When
the scale of the perturbation k0 is of the order of the
oscillation scale κ, the flavor decoherence is approached
earlier. Lowering c means considering a longer wavelength
with respect to the oscillation length scale, and therefore the
neutrino system needs more oscillation cycles to feel the

FIG. 1 (color online). Evolution of the component P0;z for
k0 ¼ κ. The continuous curve corresponds to a fluctuation seed
ϵ ¼ 10−3, and the dashed one to ϵ ¼ 10−7, while the dotted one is
for the homogeneous case with ϵ ¼ 0.

FIG. 2 (color online). Trajectory of the zero mode polarization
vector P0 in the x-z plane for the homogeneous case (left panel)
and for an inhomogeneity with ϵ ¼ 10−3 and k0 ¼ κ (right panel).

FIG. 3 (color online). Evolution of the component P0;z for
ϵ ¼ 10−3 and different values of k0 ¼ cκ: c ¼ 1 (continuous
curve), c ¼ 102 (dashed curve), and c ¼ 10−2 (dotted curve).
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Quasi-steady states are the numerically observed outcomes
of collisionless instabilities:

+ many more papers
   on fast instabilities

Bhattacharyya & Dasgupta, PRD (2020)
Richers, Willcox, & Ford, PRD (2021)
Nagakura & Zaizen, PRL (2022) & others

Thermodynamics predicts the mean asymptotic distributions.
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Thermodynamics also
explains the association
between fast instabilities
and angular crossings.

Sawyer, PRL (2016); Chakraborty, Hansen, Izaguirre, & Raffelt, JCAP (2016); Dasgupta, Mirizzi, & Sen, JCAP (2017) [figure];
Izaguirre, Raffelt, & Tamborra, PRL (2017); Capozzi, Dasgupta, Lisi, Marrone, & Mirizzi, PRD (2017);

Abbar & Duan, PRD (2018); Capozzi, Dasgupta, Mirizzi, Sen, & Sigl, PRL (2019); Martin, Yi, & Duan, PLB (2020);
Johns, Nagakura, Fuller, & Burrows, PRD (2020a); Johns & Nagakura, PRD (2021); Nagakura, Burrows, Johns, & Fuller, PRD (2021);

Morinaga, PRD (2022); Dasgupta, PRL (2022); & many others

JCAP02(2017)019

Figure 1. Schematic geometry of the model and flavor-dependent zenith-angle distributions of neu-
trino fluxes. The 3 ellipses are schematic polar plots of the normalized angular distributions of the ⌫e

(blue), ⌫̄e (red), and ⌫x (green) fluxes at the point where the arrows originate.

in the weak interaction basis, where � =
p

2GFne. Finally, the e↵ective Hamiltonian due to
⌫ � ⌫ interactions is given by

⌦⌫⌫ =
p

2GF

Z
d3q

(2⇡)3
(%q � %̄q)(1 � vp · vq) , (2.4)

where the term (1�vp ·vq) leads to multi-angle e↵ects [12], i.e., neutrinos moving on di↵erent
trajectories experience di↵erent potentials.

The last term on right-hand-side in eq. (2.1) represents a collisional term acting on
neutrino flavor evolution if they are still undergoing collisions with matter or amongst them-
selves. Collisions occur at a rate proportional to G2

F . In the context of both MSW and
collective flavor conversions, the collisional term is expected to be negligible, as the con-
versions occur far from the neutrinosphere, where neutrinos are free-streaming. However,
the situation is less clear for fast conversions. A back-of-the-envelope calculation, using a
nucleon density nB = ⇢nuc/mN ⇡ 1.8 ⇥ 1038 cm�3 and the neutrino-nucleon scattering cross-
section � ⇠ G2

FE2
⇠ 10�42 cm�2 for E⌫ ⇠ 10 MeV, suggests that the scattering rate is

� = �nB ⇠ 107 s�1. We will find fast conversions can occur with a larger rate ⇠ 108 s�1

and therefore neglect the collisional e↵ects as a first approximation. We leave a dedicated
investigation of this to a future work.

Even after neglecting the collisions, a self-consistent solution of the flavor evolution
requires solving the complete space-time-dependent problem described by eq. (2.1). First
attempts at solution, by Fourier transforming eq. (2.1) along some of the space or time
directions, have been recently presented in [29–35]. However, with the tools available at
present, solving the full seven-dimensional problem remains a formidable challenge.

Interestingly, a major simplification suggests itself if one is interested in studying flavor
conversions only at small distances from the SN core. Most of the neutrinos are emitted
around a radius O(10) km from the center of the SN. For phenomena that take place very
close to this emission region, the curvature of the neutrinosphere is not relevant. We therefore
model the source region as a di↵use flat infinite plane, as shown in figure 1.
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Non-collective neutrino oscillations

The MSW effect
Wolfenstein, PRD (1978)
Mikheyev & Smirnov, SJNP (1985)
Bethe, PRL (1986)
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Non-collective neutrino oscillations

Nussinov, PLB (1976)
Kayser, PRD (1981)
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Non-collective neutrino oscillations

Collisional decoherence

Nussinov, PLB (1976)
Kayser, PRD (1981)
Kiers, Nussinov, & Weiss, PRD (1996)

The MSW effect

Kinematic decoherence

Harris & Stodolsky, PLB (1978)
Thomson, PRA (1992)
Raffelt, Sigl, & Stodolsky, PRL (1993)

Wolfenstein, PRD (1978)
Mikheyev & Smirnov, SJNP (1985)
Bethe, PRL (1986)
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Heat
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Collective neutrino oscillations

MSW-like effects  Spectral swaps. Matter–neutrino resonances.
Duan, Fuller, Carlson, & Qian, PRD (2006)
Raffelt & Smirnov, PRD (2007)
Malkus, Friedland, & McLaughlin, 1403.5797
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Collective neutrino oscillations

Kostelecký & Samuel, PLB (1993)
Sawyer, PRD (2005)
Duan, Fuller, & Qian, PRD (2006)

MSW-like effects  Spectral swaps. Matter–neutrino resonances.

Collisionless instabilities  Slow instabilities. Fast instabilities.

Duan, Fuller, Carlson, & Qian, PRD (2006)
Raffelt & Smirnov, PRD (2007)
Malkus, Friedland, & McLaughlin, 1403.5797
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Collective neutrino oscillations

Collisional instabilities

Kostelecký & Samuel, PLB (1993)
Sawyer, PRD (2005)
Duan, Fuller, & Qian, PRD (2006)

MSW-like effects  Spectral swaps. Matter–neutrino resonances.

Collisionless instabilities  Slow instabilities. Fast instabilities.

Johns, PRL (2023)
Xiong, Johns, Wu, & Duan, 2212.03750
Liu, Zaizen, & Yamada, PRD (2023)

Duan, Fuller, Carlson, & Qian, PRD (2006)
Raffelt & Smirnov, PRD (2007)
Malkus, Friedland, & McLaughlin, 1403.5797

Heat
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Work

Heat
(external)
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Local mixing equilibrium

The miscidynamic equation

<latexit sha1_base64="JnTBMPFvLkso++hWVaO3mxVG/z0=">AAACDnicbVC5TgMxEPWGO1wBShqLCIkq2kVcJYKGMkgkQcqGyOtMEitee7FngWiVL6DhV2goQIiWmo6/wTkKrieN9PTejGbmRYkUFn3/08tNTc/Mzs0v5BeXlldWC2vrVatTw6HCtdTmMmIWpFBQQYESLhMDLI4k1KLe6dCv3YCxQqsL7CfQiFlHibbgDJ3ULGyHpqtpKLXqGNHpIjNG39KheBUi3KGJM7geNAtFv+SPQP+SYEKKZIJys/ARtjRPY1DIJbO2HvgJNjJmUHAJg3yYWkgY77EO1B1VLAbbyEbvDOi2U1q0rY0rhXSkfp/IWGxtP45cZ8ywa397Q/E/r55i+6iRCZWkCIqPF7VTSVHTYTa0JQxwlH1HGDfC3Up5lxnG0SWYdyEEv1/+S6q7peCgtH++Vzw+mcQxTzbJFtkhATkkx+SMlEmFcHJPHskzefEevCfv1Xsbt+a8ycwG+QHv/Qu4pZ0y</latexit>

⇢ �! ⇢eq

<latexit sha1_base64="ldkjM89DAsiLRGJh29U7X1fF8qQ="></latexit>

i (@t + p̂ · @x) ⇢eq = iCeq
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Local mixing equilibrium

The miscidynamic equation
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⇢ �! ⇢eq

<latexit sha1_base64="ldkjM89DAsiLRGJh29U7X1fF8qQ="></latexit>

i (@t + p̂ · @x) ⇢eq = iCeq

What changes need to be made to current simulations?

(1) Distribution functions             Density matrices.
(2) Add off-diagonals to collision terms.
(3) Re-equilibrate 𝜌 after each step.
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Summary

Main idea #1: Supernova neutrinos are a natural experiment
in the statistical mechanics of particle superpositions.

Main idea #2. We’ve outlined the thermodynamic theory of
oscillating neutrinos. The primary equilibration mechanism is
collisionless phase-space transfer.

Main idea #3. A transport theory—miscidynamics—follows
from the assumption of local equilibrium. It might enable the
accurate incorporation of neutrino mixing into simulations.


