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Also see:

Ehring et al., PRD (2023)
Nagakura, PRL (2023)
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Every neutrino is a superposition of wave packets:

Kinematic
decoherence

—

There’s a term for superposed Gaussians...

Schrodinger cat states

Quantum Interference
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Rundle, Mills, Tilma, Samson, Everitt, PRA 2017

Quantum Interference S. Haroche via Science et Vie Junior
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When neutrinos forward scatter on background particles,
they acquire in-medium effective masses.



Neutrinos contribute to their own background. As a result,
forward scattering changes oscillations in a nonlinear way.
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Absorption and momentum-changing scattering
cause collisional decoherence.
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Quantum kinetic equation for density matrix p(t, r, p):

1 (0 +D-0) p=I[H,p|+iC

[ Y ) \ i J !_'_I
Particle advection Flavor Collisions
mixing

Dolgov, SINP (1981); Stodolsky, PRD (1987); No6tzold & Raffelt, NPB (1988); Pantaleone, PLB (1992); Sigl & Raffelt, NPB (1993);
Raffelt, Sigl, & Stodolsky, PRL (1993); Raffelt & Sigl, AP (1993); Loreti & Balantekin, PRD (1994); Yamada, PRD (2000);
Friedland & Lunardini, PRD (2003); Strack & Burrows, PRD (2005); Cardall, PRD (2008); Volpe, Vddndnen, & Espinoza, PRD (2013);
Vlasenko, Fuller, & Cirigliano, PRD (2014); Kartavtsev, Raffelt, & Vogel, PRD (2015); Stirner, Sigl, & Raffelt, JCAP (2018);
Nagakura, PRD (2022); Johns, 2305.04916; plus many others



Compare to climate modeling...

CHANGE IN PRECIPITATION BY END OF 21st CENTURY
inches of liquid water per year
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as projected by NOAA/GFDL CM2.1

NOAA Geophysical Fluid Dynamics Laboratory

Without hydrodynamics, this field would not have gotten far.



Length scales, coarse-grainings, & transport theories
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Length scales, coarse-grainings, & transport theories

Microscale Mesoscale Macroscale 1
De Broglie Oscillation Collisional i No further
length length mean free path : scales
1
i
1
1
: >
Exact I
1
dynamics Kinetics i
| >
Miscidynamics i
From Latin '
miscere, “to mix” E Hy dro-
I dynamics
Computationally infeasible Inapplicable

Johns, 2306.14982



Varieties of equilibration

ems relax through information loss. Where does the information



Varieties of equilibration
Systems relax through information loss. Where does the information go?

% The environment

Classical: Particles bouncing off container walls. Blackbody radiation.
Quantum: Decoherence (in the word’s most common usage).



Varieties of equilibration
Systems relax through information loss. Where does the information go?

% The environment

Classical: Particles bouncing off container walls. Blackbody radiation.
Quantum: Decoherence (in the word’s most common usage).

% Many-body correlations

Classical: H-theorem in Boltzmann gases.
Quantum: Thermalization in ultracold atomic gases.



Varieties of equilibration
Systems relax through information loss. Where does the information go?

% The environment

Classical: Particles bouncing off container walls. Blackbody radiation.
Quantum: Decoherence (in the word’s most common usage).

< Many-body correlations

Classical: H-theorem in Boltzmann gases.
Quantum: Thermalization in ultracold atomic gases.

<+ Small scales

Classical: Collisionless relaxation in galaxies & plasmas. Turbulence.
Quantum: Mixing equilibration.



To formulate the thermodynamics of oscillating neutrinos,
we need to define an appropriate entropy:

S:—/dp Tr [pp log pp + (1 — pp) log (1 — pp)]

T

Spatially coarse-grained
density matrix
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To formulate the thermodynamics of oscillating neutrinos,
we need to define an appropriate entropy:

S:—/dp Tr [pp log pp + (1 — pp) log (1 — pp)]

T

Spatially coarse-grained
density matrix

Second law of thermodynamics

S is maximal at equilibrium,
subject to conservation laws.

We then appeal to two physical principles: scale separation & ergodicity.

Johns, 2306.14982
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Equilibrium distribution of collisionless
neutrino matter:

eq ], The system’s coarse-grained
pp — 5 (Heq Y ) variables are in thermal contact
& p —Hp +1 with its unresolved fluctuations.
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Equilibrium distribution of collisionless
neutrino matter:

eq ], The system’s coarse-grained
pp — 5 (Heq Y ) variables are in thermal contact
& p —Hp +1 with its unresolved fluctuations.

Third law of thermodynamics

The unique (S = 0) ground state:

T—0 5[] <HIe)q)IJ < Hp

€q \
(pp )]J 0 (Hle)q>lj>,up

Johns, 2306.14982



First law of thermodynamics

AU =W +Q
with Wand Q appropriately defined.

EQenV — kin
1 1 S
AU = — HoAPy + ~H - A|P|P + = |H||P|A (H - P)
N; 2 2
1 1 — — A A
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First law of thermodynamics

AU =W +Q
with Wand Q appropriately defined.

:Qenv — kin
AU = — HoAPy + ~H - A|P|P + = |H||P|A (H P)
N; ) >
1 1 = S
+ ——AH P, + ;A|H||P|H - P
N; 2
1 1 2 s ~ :

N; 2

From here it’s easy to show that quantum-adiabatic effects
(MSW, spectral swaps, MNR) are adiabatic processes in
the thermodynamic sense.

Johns, 2306.14982



Quasi-steady states are the numerically observed outcomes
of collisionless instabilities:

Sawyer, PRD (2005)
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Raffelt & Sigl, PRD (2007)
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+ many more papers

on fast instabilities

Bhattacharyya & Dasgupta, PRD (2020)
Richers, Willcox, & Ford, PRD (2021)
Mangano, Mirizzi, & Saviano, PRD (2014) Nagakura & Zaizen, PRL (2022) & others

Thermodynamics predicts the mean asymptotic distributions.
Johns, 2306.14982



Thermodynamics also
explains the association
between fast instabilities
and angular crossings.

R~ O(10km)

Sawyer, PRL (2016); Chakraborty, Hansen, Izaguirre, & Raffelt, JCAP (2016); Dasgupta, Mirizzi, & Sen, JCAP (2017) [figure];
Izaguirre, Raffelt, & Tamborra, PRL (2017); Capozzi, Dasgupta, Lisi, Marrone, & Mirizzi, PRD (2017);
Abbar & Duan, PRD (2018); Capozzi, Dasgupta, Mirizzi, Sen, & Sigl, PRL (2019); Martin, Yi, & Duan, PLB (2020);
Johns, Nagakura, Fuller, & Burrows, PRD (2020a); Johns & Nagakura, PRD (2021); Nagakura, Burrows, Johns, & Fuller, PRD (2021);
Morinaga, PRD (2022); Dasgupta, PRL (2022); & many others
Johns, 2306.14982
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(internal)

The MSW effect
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Mikheyev & Smirnov, SJNP (1985)
Bethe, PRL (1986)

Kinematic decoherence

Nussinov, PLB (1976)
Kayser, PRD (1981)
Kiers, Nussinov, & Weiss, PRD (1996)

Johns, 2306.14982



Non-collective neutrino oscillations

Work

Heat
(internal)

Heat
(external)

The MSW effect

Wolfenstein, PRD (1978)
Mikheyev & Smirnov, SJNP (1985)
Bethe, PRL (1986)

Kinematic decoherence

Nussinov, PLB (1976)
Kayser, PRD (1981)
Kiers, Nussinov, & Weiss, PRD (1996)

Collisional decoherence

Harris & Stodolsky, PLB (1978)
Thomson, PRA (1992)
Raffelt, Sigl, & Stodolsky, PRL (1993)
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Collective neutrino oscillations

Work MSW-like effects Spectral swaps. Matter-neutrino resonances.

Duan, Fuller, Carlson, & Qian, PRD (2006)
Raffelt & Smirnov, PRD (2007)
Malkus, Friedland, & McLaughlin, 1403.5797
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Work MSW-like effects Spectral swaps. Matter-neutrino resonances.

Duan, Fuller, Carlson, & Qian, PRD (2006)
Raffelt & Smirnov, PRD (2007)
Malkus, Friedland, & McLaughlin, 1403.5797

Heat COlliSiOHlESS instabilities Slow instabilities. Fast instabilities.

- Kostelecky & Samuel, PLB (1993)
(lnternal) Sawyer, PRD (2005)

Duan, Fuller, & Qian, PRD (2006)
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Collective neutrino oscillations

MSW-like effects Spectral swaps. Matter-neutrino resonances.

Duan, Fuller, Carlson, & Qian, PRD (2006)
Raffelt & Smirnov, PRD (2007)
Malkus, Friedland, & McLaughlin, 1403.5797

COlliSiOHlESS instabilities Slow instabilities. Fast instabilities.

Kostelecky & Samuel, PLB (1993)
Sawyer, PRD (2005)
Duan, Fuller, & Qian, PRD (2006)

Collisional instabilities

Johns, PRL (2023)
Xiong, Johns, Wu, & Duan, 2212.03750
Liu, Zaizen, & Yamada, PRD (2023)

Johns, 2306.14982



mixing equilibrium

o 0

The miscidynamic equation

i (0r + P - Ox) p°1 = iC*



Local mixing equilibrium

€q
p—>p
The miscidynamic equation

i (0 +P - Ox) po@ = iC

What changes need to be made to current simulations?

(1) Distribution functions — Density matrices.
(2) Add off-diagonals to collision terms.
(3) Re-equilibrate p after each step.

Johns, 2306.14982
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in the statistical mechanics of particle superpositions.
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Summary

Main idea #1: Supernova neutrinos are a natural experiment
in the statistical mechanics of particle superpositions.

Main idea #2. We've outlined the thermodynamic theory of
oscillating neutrinos. The primary equilibration mechanism is
collisionless phase-space transfer.

Main idea #3. A transport theory —miscidynamics —follows
from the assumption of local equilibrium. It might enable the
accurate incorporation of neutrino mixing into simulations.



