Thermodynamics of oscillating neutrinos

Luke Johns

NASA Einstein Fellow
UC Berkeley

Ehring, Abbar, Janka, Raffelt, \& Tamborra, 2305.11207

Flavor mixing is estimated to significantly alter CCSN heating rates-and thus the explosion dynamics.

Also see:
Ehring et al., PRD (2023)
Nagakura, PRL (2023)

Neutrino mass raises fundamental questions for particle physics.

Neutrino mass raises fundamental questions for particle physics.
and statistical

Every neutrino is a superposition of wave packets:

Kinematic decoherence

Every neutrino is a superposition of wave packets:

Kinematic decoherence

There's a term for superposed Gaussians...

Every neutrino is a superposition of wave packets:

Kinematic decoherence

There's a term for superposed Gaussians...

Schrödinger cat states

S. Haroche via Science et Vie Junior

Rundle, Mills, Tilma, Samson, Everitt, PRA 2017

When neutrinos forward scatter on background particles, they acquire in-medium effective masses.

Neutrinos contribute to their own background. As a result, forward scattering changes oscillations in a nonlinear way.

Collective oscillations

Absorption and momentum-changing scattering cause collisional decoherence.

Schrödinger's clowder

Schrödinger's clowder

Statistical mechanics of superpositions of particles

Quantum kinetic equation for density matrix $\rho(t, r, p)$:

$i\left(\partial_{t}+\hat{\mathbf{p}} \cdot \partial_{\mathbf{r}}\right) \rho=[H, \rho]+i C$
 Particle advection
 Flavor mixing

 Collisions

Dolgov, SJNP (1981); Stodolsky, PRD (1987); Nötzold \& Raffelt, NPB (1988); Pantaleone, PLB (1992); Sigl \& Raffelt, NPB (1993);
Raffelt, Sigl, \& Stodolsky, PRL (1993); Raffelt \& Sigl, AP (1993); Loreti \& Balantekin, PRD (1994); Yamada, PRD (2000);
Friedland \& Lunardini, PRD (2003); Strack \& Burrows, PRD (2005); Cardall, PRD (2008); Volpe, Väänänen, \& Espinoza, PRD (2013);
Vlasenko, Fuller, \& Cirigliano, PRD (2014); Kartavtsev, Raffelt, \& Vogel, PRD (2015); Stirner, Sigl, \& Raffelt, JCAP (2018);
Nagakura, PRD (2022); Johns, 2305.04916; plus many others

Compare to climate modeling...

NOAA Geophysical Fluid Dynamics Laboratory

Without hydrodynamics, this field would not have gotten far.

Varieties of equilibration

Systems relax through information loss. Where does the information go?

Varieties of equilibration

Systems relax through information loss. Where does the information go?

* The environment

Classical: Particles bouncing off container walls. Blackbody radiation. Quantum: Decoherence (in the word's most common usage).

Varieties of equilibration

Systems relax through information loss. Where does the information go?

* The environment

Classical: Particles bouncing off container walls. Blackbody radiation. Quantum: Decoherence (in the word's most common usage).

* Many-body correlations

Classical: H-theorem in Boltzmann gases.
Quantum: Thermalization in ultracold atomic gases.

Varieties of equilibration

Systems relax through information loss. Where does the information go?

* The environment

Classical: Particles bouncing off container walls. Blackbody radiation.
Quantum: Decoherence (in the word's most common usage).

* Many-body correlations

Classical: H-theorem in Boltzmann gases.
Quantum: Thermalization in ultracold atomic gases.

* Small scales

Classical: Collisionless relaxation in galaxies \& plasmas. Turbulence.
Quantum: Mixing equilibration.

To formulate the thermodynamics of oscillating neutrinos, we need to define an appropriate entropy:

$$
S=-\int d \mathbf{p} \operatorname{Tr}\left[\overline{\rho_{\mathbf{p}}} \log \overline{\rho_{\mathbf{p}}}+\left(1-\overline{\rho_{\mathbf{p}}}\right) \log \left(1-\overline{\rho_{\mathbf{p}}}\right)\right]
$$

To formulate the thermodynamics of oscillating neutrinos, we need to define an appropriate entropy:

$$
S=-\int d \mathbf{p} \operatorname{Tr}\left[\overline{\rho_{\mathbf{p}}} \log \overline{\rho_{\mathbf{p}}}+\left(1-\overline{\rho_{\mathbf{p}}}\right) \log \left(1-\overline{\rho_{\mathbf{p}}}\right)\right]
$$

Second law of thermodynamics

S is maximal at equilibrium, subject to conservation laws.

We then appeal to two physical principles: scale separation \& ergodicity.

Equilibrium distribution of collisionless

 neutrino matter:$$
\rho_{\mathbf{p}}^{\mathrm{eq}}=\frac{1}{e^{\beta\left(H_{\mathbf{p}}^{\mathrm{eq}}-\mu_{\mathbf{p}}\right)}+1}
$$

Equilibrium distribution of collisionless

 neutrino matter:$$
\rho_{\mathbf{p}}^{\mathrm{eq}}=\frac{1}{e^{\beta\left(H_{\mathbf{p}}^{\mathrm{eq}}-\mu_{\mathbf{p}}\right)}+1}
$$

The system's coarse-grained variables are in thermal contact with its unresolved fluctuations.

Equilibrium distribution of collisionless neutrino matter:

$$
\rho_{\mathbf{p}}^{\mathrm{eq}}=\frac{1}{e^{\beta\left(H_{\mathbf{p}}^{\mathrm{eq}}-\mu_{\mathbf{p}}\right)}+1}
$$

The system's coarse-grained variables are in thermal contact with its unresolved fluctuations.

Third law of thermodynamics
The unique $(S=0)$ ground state:

$$
\left(\rho_{\mathbf{p}}^{\mathrm{eq}}\right)_{I J} \xrightarrow{T \rightarrow 0} \begin{cases}\delta_{I J} & \left(H_{\mathbf{p}}^{\mathrm{eq}}\right)_{I J} \leq \mu_{\mathbf{p}} \\ 0 & \left(H_{\mathbf{p}}^{\mathrm{eq}}\right)_{I J}>\mu_{\mathbf{p}}\end{cases}
$$

First law of thermodynamics

$$
\Delta U=W+Q
$$

with W and Q appropriately defined.

$$
\begin{array}{r}
\Delta U=\overbrace{\frac{1}{N_{f}} H_{0} \Delta P_{0}+\frac{1}{2} \vec{H} \cdot \Delta|\vec{P}| \hat{P}}^{\equiv Q^{\text {env }}}+\overbrace{\frac{1}{2}|\vec{H}||\vec{P}| \Delta(\hat{H} \cdot \hat{P})}^{\equiv Q^{\text {kin }}} \\
\quad+\underbrace{\frac{1}{N_{f}} \Delta H_{0} P_{0}+\frac{1}{2} \Delta|\vec{H}||\vec{P}| \hat{H} \cdot \hat{P}}_{\equiv W}
\end{array}
$$

First law of thermodynamics

$$
\Delta U=W+Q
$$

with W and Q appropriately defined.

$$
\begin{aligned}
& \Delta U=\overbrace{\frac{1}{N_{f}} H_{0} \Delta P_{0}+\frac{1}{2} \vec{H} \cdot \Delta|\vec{P}| \hat{P}}+\overbrace{\frac{1}{2}|\vec{H}||\vec{P}| \Delta(\hat{H} \cdot \hat{P})}^{\equiv Q^{\text {env }}} \\
& \rho=\frac{1}{N_{f}} P_{0}+\frac{1}{2} \vec{P} \cdot \vec{\Lambda}+\underbrace{\frac{1}{N_{f}} \Delta H_{0} P_{0}+\frac{1}{2} \Delta|\vec{H}||\vec{P}| \hat{H} \cdot \hat{P}}_{\equiv W}
\end{aligned}
$$

Quasi-steady states are the numerically observed outcomes of collisionless instabilities:

Sawyer, PRD (2005)

Mangano, Mirizzi, \& Saviano, PRD (2014)

Raffelt \& Sigl, PRD (2007)

+ many more papers on fast instabilities

Bhattacharyya \& Dasgupta, PRD (2020) Richers, Willcox, \& Ford, PRD (2021)
Nagakura \& Zaizen, PRL (2022) \& others

Thermodynamics predicts the mean asymptotic distributions.

Thermodynamics also explains the association between fast instabilities and angular crossings.

Sawyer, PRL (2016); Chakraborty, Hansen, Izaguirre, \& Raffelt, JCAP (2016); Dasgupta, Mirizzi, \& Sen, JCAP (2017) [figure];
Izaguirre, Raffelt, \& Tamborra, PRL (2017); Capozzi, Dasgupta, Lisi, Marrone, \& Mirizzi, PRD (2017);
Abbar \& Duan, PRD (2018); Capozzi, Dasgupta, Mirizzi, Sen, \& Sigl, PRL (2019); Martin, Yi, \& Duan, PLB (2020);
Johns, Nagakura, Fuller, \& Burrows, PRD (2020a); Johns \& Nagakura, PRD (2021); Nagakura, Burrows, Johns, \& Fuller, PRD (2021);
Morinaga, PRD (2022); Dasgupta, PRL (2022); \& many others

Non-collective neutrino oscillations

Work The MSW effect
Wolfenstein, PRD (1978)
Mikheyev \& Smirnov, SJNP (1985)
Bethe, PRL (1986)

Non-collective neutrino oscillations

Work The MSW effect

Wolfenstein, PRD (1978)
Mikheyev \& Smirnov, SJNP (1985)
Bethe, PRL (1986)

Heat
(internal)

Kinematic decoherence
Nussinov, PLB (1976)
Kayser, PRD (1981)
Kiers, Nussinov, \& Weiss, PRD (1996)

Non-collective neutrino oscillations

Work The MSW effect

Wolfenstein, PRD (1978)
Mikheyev \& Smirnov, SJNP (1985)
Bethe, PRL (1986)

Heat Kinematic decoherence

Nussinov, PLB (1976)
Kayser, PRD (1981)
Kiers, Nussinov, \& Weiss, PRD (1996)

Heat Collisional decoherence
(external)
Harris \& Stodolsky, PLB (1978)
Thomson, PRA (1992)
Raffelt, Sigl, \& Stodolsky, PRL (1993)

Collective neutrino oscillations

Work MSW-like effects Spectral swaps. Matter-neutrino resonances.
Duan, Fuller, Carlson, \& Qian, PRD (2006)
Raffelt \& Smirnov, PRD (2007)
Malkus, Friedland, \& McLaughlin, 1403.5797

Collective neutrino oscillations

Work MSW-like effects Spectral swaps. Matter-neutrino resonances.
Duan, Fuller, Carlson, \& Qian, PRD (2006)
Raffelt \& Smirnov, PRD (2007)
Malkus, Friedland, \& McLaughlin, 1403.5797

Collisionless instabilities Slow instabilities. Fast instabilities.
Kostelecký \& Samuel, PLB (1993)
Sawyer, PRD (2005)
Duan, Fuller, \& Qian, PRD (2006)

Collective neutrino oscillations

Work MSW-like effects Spectral swaps. Matter-neutrino resonances.
Duan, Fuller, Carlson, \& Qian, PRD (2006)
Raffelt \& Smirnov, PRD (2007)
Malkus, Friedland, \& McLaughlin, 1403.5797

Collisionless instabilities slow instabilities. Fast instabilities.
Kostelecký \& Samuel, PLB (1993)
Sawyer, PRD (2005)
Duan, Fuller, \& Qian, PRD (2006)

Heat Collisional instabilities
Johns, PRL (2023)
Xiong, Johns, Wu, \& Duan, 2212.03750
Liu, Zaizen, \& Yamada, PRD (2023)

Local mixing equilibrium

$$
\rho \longrightarrow \rho^{\mathrm{eq}}
$$

The miscidynamic equation

$$
i\left(\partial_{t}+\hat{\mathbf{p}} \cdot \partial_{\mathbf{x}}\right) \rho^{\mathrm{eq}}=i C^{\mathrm{eq}}
$$

Local mixing equilibrium

What changes need to be made to current simulations?
(1) Distribution functions \longrightarrow Density matrices.
(2) Add off-diagonals to collision terms.
(3) Re-equilibrate ρ after each step.

Summary

Main idea \#1: Supernova neutrinos are a natural experiment in the statistical mechanics of particle superpositions.

Summary

Main idea \#1: Supernova neutrinos are a natural experiment in the statistical mechanics of particle superpositions.

Main idea \#2. We've outlined the thermodynamic theory of oscillating neutrinos. The primary equilibration mechanism is collisionless phase-space transfer.

Summary

Main idea \#1: Supernova neutrinos are a natural experiment in the statistical mechanics of particle superpositions.

Main idea \#2. We've outlined the thermodynamic theory of oscillating neutrinos. The primary equilibration mechanism is collisionless phase-space transfer.

Main idea \#3. A transport theory - miscidynamics-follows from the assumption of local equilibrium. It might enable the accurate incorporation of neutrino mixing into simulations.

