
HPS-MC status and plans
Insights and opinions of an HPS novice

Sarah Gaiser
October 18, 2022



1 First impressions

2 Implemented changes

3 Ideas for future updates

4 Current project

5 Summary



First impressions

1 / 9



First impressions

• Overall: HPS software very
confusing

– Distributed over several
programs/repositories

– No or not easily accessible
documentation

– In parts: code badly formatted,
not readable

• No (complete) guidelines on how
to get started

– Exception: installation guides
exist

– New people very dependent on
older collaboration members →
stuck if those not available

1 / 9



Implemented changes – Documentation

• Doxygen = software tool to generate browsable
documentation from comments in code

• Documentation for hps-mc, slic, and hpstr
– Doxygen combined with GitHub actions
– Automatically updated and deployed on the corresponding

website on every merge
• Doxygen requires a specific comment style

– Documented on Doxygen website
– Refer to existing comments in hps-mc, slic, and hpstr for

further guidance
• See also: How to install Doxygen and Setup Doxygen for code

documentation

2 / 9

https://doxygen.nl/manual/
https://jeffersonlab.github.io/hps-mc/
https://slaclab.github.io/slic/
https://jeffersonlab.github.io/hpstr/
https://doxygen.nl/manual/docblocks.html
https://confluence.slac.stanford.edu/display/hpsg/Install+Doxygen
https://confluence.slac.stanford.edu/display/hpsg/Setup+Doxygen+for+code+documentation
https://confluence.slac.stanford.edu/display/hpsg/Setup+Doxygen+for+code+documentation


Implemented changes – Examples and prod

• hps-mc/examples: easily executable and fast scripts that
illustrate the different use cases for hps-mc

– For some examples: automatically download files to run tests
• Files are stored at JLab (same area as hps-java test data)
• Job script will recognize url and download file using wget to

scratch directory
• hps-mc/prod: new space in hps-mc to streamline the

production of MC data
– Separate data generation in three stages: generation (gen),

slic, readout and reconstruction (recon)
– So far: A-prime, beam, fee, tritrig, and tritrig+beam

3 / 9



Example production workflow

MG5gen

slic Unzip StdHepConverter

AddMother BeamCoords SLIC

recon readout recon hpstr

4 / 9



Updates to hps-mc

Implemented changes
• Code documentation

– Explanation of classes,
variables, functions,
etc.

– Short written
introductions of
functionality and
structure

• hps-mc/examples: short
example scripts

– Not all examples were
functional

– Additional instructions
and explanations

To do g
• Overview of HPS

software: hps-mc, hpstr,
slic, hps-java, ...

– Which program is
responsible for what?

– How are different
things connected?

– When/how do I use
the different
components?

• Uniform code formatting
• Unit and functional

testing

5 / 9



Updates to hps-mc

Implemented changes
• Code documentation

– Explanation of classes,
variables, functions,
etc.

– Short written
introductions of
functionality and
structure

• hps-mc/examples: short
example scripts

– Not all examples were
functional

– Additional instructions
and explanations

To do g
• Overview of HPS

software: hps-mc, hpstr,
slic, hps-java, ...

– Which program is
responsible for what?

– How are different
things connected?

– When/how do I use
the different
components?

• Uniform code formatting
• Unit and functional

testing

5 / 9



Code formatting

• General idea: implement linter in CI pipeline to ensure good
code formatting

• What tool do we want to use?
– What are our requirements?

• Compatibility with Doxygen style comments
• ...

– Which python style do we want to follow?
• Personally, no strong opinion → want to start discussion

– Possible tool: pycodestyle – configurable to work with Doxygen
style comments

• How would it work?
– When pushing/merging code, format is checked and mistakes

highlighted
– Formatting by hand or using tools like autopep8
– If issues are fixed, process as usual

6 / 9



Functional and unit testing

• Functional tests
– Run program and compare result to expected outcome
– Black-box tests: no information on internal workings of

program
• Unit tests

– Used to validate single units of code
– White-box tests: ensure correctness of code functions and

code-snippets

• Why is this important?
– Catch bugs and logical mistakes easily and early on
– Reduces overall development time if test written in parallel to

production code
– Simplfy code review and general understanding of code

functionality
– Testable code usually follows good coding practices/principles

7 / 9



Functional and unit testing

• Functional tests
– Run program and compare result to expected outcome
– Black-box tests: no information on internal workings of

program
• Unit tests

– Used to validate single units of code
– White-box tests: ensure correctness of code functions and

code-snippets
• Why is this important?

– Catch bugs and logical mistakes easily and early on
– Reduces overall development time if test written in parallel to

production code
– Simplfy code review and general understanding of code

functionality
– Testable code usually follows good coding practices/principles

7 / 9



Functional and unit testing

How can we make this work?
• Problems

– Code not completely testable at the moment
– Takes time to write tests
– Many programming languages → many testing frameworks

• Possible solutions
– Testability: write tests for testable code, refacture or ignore

the rest
– Time: Use test-writing as tool to understand code more deeply

• Viele Hände, schnelles Ende
• github copilot: automatic generation of unit tests

– Testing frameworks:
• C++: googletest
• Python: unittest (?)
• Java: JUnit (?)

7 / 9

https://github.com/features/copilot
https://google.github.io/googletest/primer.html
https://docs.python.org/3/library/unittest.html
https://junit.org/junit5/


Current project – Alignment studies

• Goal: understand effect of misalignments on data
• At the moment: simulate, reconstruct, and analyze with two

different detector versions
– Complete pipeline with one detector
– Simulate with one, reconstruct with the other
– Compare different versions

• Other ideas:
– Analyze effect of changed distance between sensors and

randomly distributed Tu and Rw for each sensor
– Determine reasonable widths of normal distributions
– Create sw tools for quickly generating new detectors

• In the meantime: document steps and create short how-to’s
for (personal) reference

8 / 9



Summary

• Successfully implemented changes
– Code documentation with Doxygen
– Cleanup of hps-mc/examples
– Setup of MC production pipeline in hps-mc/prod

• Things we need
– Good introduction to and overview of HPS software
– Better (=uniform) code formatting
– Eventually: checks for code quality and correctness; structural

and unit tests

9 / 9


	First impressions
	Implemented changes
	Ideas for future updates
	Current project
	Summary

