Preliminary

preliminary A review of and HPS discovery potential for True Muonium

Preliminary

Emrys Peets

Road Map

- What is True Muonium? Fun Facts
- Calculating Primary Production Cross Section
- Dissociation and Ideal Targets
- Total Transition Cross Sections
- Method for Calculating Yield
- HPS-MC Study (very preliminary)
 - 4.55 GeV
 - 6.6 GeV
- Next Steps

Worthwhile Resources (incomplete)

- Schuster. <u>The Production and Discovery of True Muonium in Fixed-Target Experiments</u>.
- Holvik E, Olsen HA. <u>Creation of relativistic fermionium in collisions of electrons with atoms.</u> Phys Rev D Part Fields. 1987 Apr 1;35(7):2124-2129. doi: 10.1103/physrevd.35.2124. PMID: 9957899.
- N. Arteaga-Romero, C. Carimalo, and V. G. Serbo. <u>Production of the bound triplet μ+μ-system</u> in collisions of electrons with atoms. Physical Review A, 62(3), Aug 2000.
- Stanley J. Brodsky and Richard F. Lebed. <u>Production of the smallest qed atom: True</u> <u>muonium(μ+μ–).</u>Physical Review Letters, 102(21), May 2009.
- B. Yale. <u>HEAVY PHOTON DISPLACED VERTEX SEARCH AT 2.3GeV WITH PROSPECTS</u> <u>FOR TRUE MUONIUM DISCOVERY</u> (Chapter 8)

$\pi^- p \to (\mathrm{TM})n$ $\gamma Z \to (TM)Z$ $e^-Z \to e^-(\mathrm{TM})Z$ $Z_1 Z_2 \rightarrow Z_1 Z_2 (\mathrm{TM})$ $\eta \to (TM)\gamma$ $e^+e^- \rightarrow (TM)$ $\mu^+\mu^- \to (TM)$

Quick facts:

- True muonium is the exotic "fermionium" atom consisting of a bound $(\mu + \mu -)$
- $M_{TM} \sim 2 M \mu (2 M \mu Binding)$
- Bohr Radius ~ 512 fm ⇒ very small
 (< hydrogen atom)
 - TM Decays much sooner than μ +, μ -

<u>SLAO</u>

True Muonium Level Diagram

Electro Production of Dimuonium

$$e^{-}Z \rightarrow e^{-}(TM)Z$$

$$n = 3 (E = -156 \text{ eV})$$

$$a^{3}S_{1}$$

$$a^{-}Z \rightarrow e^{-}(TM)Z$$

$$n = 3 (E = -156 \text{ eV})$$

$$a^{3}S_{1}$$

$$a^{-}Z \rightarrow e^{-}(TM)Z$$

$$n = 3 (E = -156 \text{ eV})$$

$$a^{-}e^{-}(48.8 \text{ ps})$$

$$a^{-}S_{1}$$

$$a^{-}Z \rightarrow e^{-}(TM)Z$$

$$n = 2 (E = -352 \text{ eV})$$

$$e^{+}e^{-}(14.5 \text{ ps})$$

$$a^{-}S_{1}$$

$$a^{-}Z \rightarrow e^{-}(14.5 \text{ ps})$$

$$a^{-}S_{1}$$

$$a^{-}Z \rightarrow e^{-}(14.5 \text{ ps})$$

$$a^{-}Z \rightarrow e^{-}(14.5 \text{$$

True Muonium Level Diagram

Electro Production of Dimuonium

$$e^{-}Z \rightarrow e^{-}(TM)Z$$

$$n = 3 (E = -156 \text{ eV})$$

$$e^{+}e^{-} (48.8 \text{ ps})$$

$$2^{3}S_{1}$$

$$y^{\gamma} (16.3 \text{ ps})$$

$$2^{3}S_{1}$$

$$y^{\gamma} (16.3 \text{ ps})$$

$$2^{3}S_{1}$$

$$2^{2}S_{1}$$

$$2^{2}S_$$

Challenge of Orthodimuonium

Oppressed by Bethe-Heitler Background

Procedure for Calculating Primary Production Cross Section (only bremm)

$$d\sigma = \frac{1}{4n^3} \frac{Z^2 \alpha^7}{m_{\mu}^2} \frac{x \left(1-x\right) \left(1-x+\frac{1}{3}x^2\right) dx}{\left[1-x+(m_e/m_{\mu\bar{\mu}})^2\right]^2} \times \left(\ln\left[\frac{\left(E_{beam}/m_{\mu}\right)^2 \left(1-x\right)^2}{1-x+(m_e/m_{\mu\bar{\mu}})^2}\right] - 1\right)$$

For more information on WW approximation: <u>Validity of the Weizsäcker-Williams Approximation and</u> <u>the Analysis of Beam Dump Experiments: Production of an axion, a dark photon, or a new axial-vector</u> <u>boson</u> (tldr: good for >100 MeV invariant mass, can be meh for low mass) <u>Slao</u>

Total Electric Differential Cross Section and Dissociation

Doesn't include full magnetic differential cross section (~1% difference for Pb)

Note: more complete calculation in <u>Contribution of α 2-terms to the total</u> interaction cross sections of relativistic elementary atoms with atoms of matter

9

Total Electric Differential Cross Section and Dissociation

$$d\sigma_{\text{tot}}^{nl} = Z^2 \frac{\alpha^2}{\pi} \left(1 - F^{nl0,n'l'0}(q) \right) \times \frac{1}{a^2} |\Delta(q,Z)|^2 q dq.$$
Thomas-Fermi-Moliere
$$\Delta(q,Z) = 4\pi \sum_{i=1}^3 \frac{\alpha_i}{q^2 + \beta_i^2}$$

$$\Delta(q,Z) = 4\pi \sum_{i=1}^3 \frac{\alpha_i}{q^2 + \beta_i^2}$$

$$\beta_i = \frac{m_e b_i}{121} Z^{1/3}$$

$$b_1 = 6.0, b_2 = 1.2, b_3 = 0.3$$

$$\alpha_1 = 0.10, \alpha_2 = 0.55, \alpha_3 = 0.35$$

Includes transition and dissociation cr

 $F^{nlm,n'l'm'}(q) = \int_0^\infty \int_0^\pi \int_0^{2\pi} x^2 \operatorname{Sin}(\theta) e^{iqx \operatorname{Cos}(\theta)}$

Doesn't include full magnetic differential cross section (~1% difference for Pb)

$$l_{1S \to X} = \frac{A}{N_A \rho \sigma (1S \to X)} = \frac{1}{N \sigma (1S \to X)}$$

Note: more complete calculation in <u>Contribution of α 2-terms to the total</u> interaction cross sections of relativistic elementary atoms with atoms of matter

10

Total Dissociation Length and Cross Section for Different Z (brem 13S1)

Element	Atomic number	Atomic Density (g/cm^3)	Atomic Number Density	TM (13S1>X) cross section (pb)	Dissociation Length (micron)
Tungsten	74	19.4	6.34E+22	5.68E+16	2.78
Gold	79	19.3	5.90E+22	6.43E+16	2.64
Lead	82	11.4	3.30E+22	6.90E+16	4.39
Bismuth	83	9.75	2.81E+22	7.06E+16	5.04

To-Do: Determine temperature at target during run operation

- This will answer viability of lead as target for special TM run
- If too hot, lead or bismuth alloys with other high z materials would help in changing melting temp

$$d\sigma^{nl,n'l'} = \left(1 - (-1)^{l-l'}\right) Z^2 \frac{\alpha^2}{\pi} \frac{1}{a^2} q |\Delta(q,Z) \times F^{nl0,n'l'0}\left(\frac{q}{2}\right)|^2 dq$$

	from 1S	from 2S	from 2P
to 1S	0	0	3.20×10^{-20}
to 2S	0	0	3.82×10^{-19}
to 2P	3.20×10^{-20}	3.82×10^{-19}	0
to 3S	0	0	9.53×10^{-21}
to $e^+\!e^-$	2.65×10^{-20}	7.52×10^{-20}	3.34×10^{-19}
to X	6.89×10^{-20}	5.92×10^{-19}	7.61×10^{-19}

To calculate total cross-sections for each transition must integrate total cross section and subtract relative dissociation.

SLAC

Schuster. Relative Differential cross section for different transitions.

- To-Do: Reproduce table with my calculations and cross sections

Calculating Yield (in progress)

Primary Contribution $\frac{dN_{1S}}{dz} = N_e \frac{\sigma(e^- \to 1S)}{\sigma(1S \to X)} - N_{1S}$ z = (l_target)/(l_dissoc) Secondary Contributions $\frac{dN_{2S}}{dz} = N_e \frac{\sigma(e \to 2S)}{\sigma(1S \to X)} - N_{2S} \frac{\sigma(2S \to X)}{\sigma(1S \to X)} + N_{2P} \frac{\sigma(2P \to 2S)}{\sigma(1S \to X)}$ $\frac{dN_{2P}}{dz} = N_e \frac{\sigma(e^- \to 2P)}{\sigma(1S \to X)} - N_{2P} \frac{\sigma(2P \to X)}{\sigma(1S \to Y)} + N_{1S} \frac{\sigma(1S \to 2P)}{\sigma(1S \to X)} + N_{2S} \frac{\sigma(2S \to 2P)}{\sigma(1S \to Y)}$

Calculating Yield (in progress)

- Assuming 450 nA current at JLAB, 6.6 GeV beam energy, 8.75 micron tungsten target
- Total $1S_{(brem)}$ yield for 1 month of beam ~ 33.13
- To-do: Finish yield calculations and contributions from (2S, 2P)
- Agrees mostly with Yale yield calculations
 - Note: Yale calculated only **3.94 analyzable TM events per month**, goal of hps-mc study is to determine if acceptance has improved

- Use existing infrastructure for a scan at a single mass (Assume A' = 211 MeV) and two beam energies:
 4.55 GeV, 6.6 GeV.
- Detector used for $4.55 \text{ GeV} \Rightarrow \text{HPS}_\text{Nominal}_\text{I0}$
- Made Detector for 6.6 GeV ← HPS_Nominal_6pt6GeV
 - Used field map from detector 2017-nominal-6pt6
 - Changed bfield to -1.5T

Flow using /hps-mc/python/jobs

Dedicated TM Scripts

TM_gen_to_slic

- job.json.tmpl
- mkjobs.sh
- jars.json
- vars.json
- subArray.sh (using ap_gen_to_slic type)

readout recon TM

subArray.sh (using readout recon type)

- .hpsmc

run : 10666 apmass: 211.0 MeV detector: HPS_Nominal_iter0 target_z: 0.0 ctau: 160.0 events: 10000

- output/HPS_Nominal_iter0/lhe/TM_4pt55_TMm211pt0_100.lhe.gz
- output/HPS_Nominal_iter0/slic/TM_4pt55_TMm211pt0_100.slcio

Config files: **recon - kalSimpTuple_cfg.py**, **ana - anaVtxTuple_cfg.py** Steering files:

- readout: "PhysicsRun2019TrigPulse", "PhysicsRun2019TrigMultiSingles"
 - recon: /org/hps/steering/recon/PhysicsRun2019MCRecon.lcsim

/HPS_Nominal_iter0/PhysicsRun2019TrigPulse/TM_reco_100(.root, .slcio)

/HPS_Nominal_iter0/PhysicsRun2019TrigMultiSingles/TM_reco_100(.root, .slcio)

hpstr_ana

hpstr_ana

- subArray.sh (using hpstr type)

Added following files to hpstr:

- /analysis/selections/vertexSelection_TM_4pt55.json
- /analysis/selections/Tight_TM_4pt55.json
- /analysis/selections/Tight_pTop_TM_4pt55.json
- /analysis/selections/Tight_pBot_TM_4pt55.json
- /analysis/plotconfigs/tracking/vtxAnalysis_TM_4pt55.json

Config: anaTMTuple.py (added into hpstr/processors/config) Run_mode: 0 Year: 2019

/HPS_Nominal_iter0/PhysicsRun2019TrigPulse/TM_4pt55_ana_100.root /HPS_Nominal_iter0/PhysicsRun2019TrigMultiSingles/TM_4pt55_ana_100.root

4.55 GeV (Preliminary)

Note: Changes not made to original .json files. Will likely need to have TM specific changes and cuts (some are defined in previous Yale presentation).

Question for room: what plots would people like to see?

- Z-vertex vs mass distribution
- Momentum vs cluster energy
- TM Vertex Acceptance (for transitions too)

6.6 GeV (Preliminary)

- Tongtong made a new steering file that set DAQ configuration for a 6.6 GeV Beam
 Future6pt6TrigSingles.lcsim thanks!
- Was able to go through the same procedure as for the 4.55 GeV
 - Tm_gen_to_slic \rightarrow readout_recon \rightarrow hpstr_ana
- Need to update .json files for appropriate cuts
- Noticed a print statement still set to 4.55 GeV (need to figure out where this is coming from)

Next Steps

- Finish calculation of yield to have comparison with yield
- Jupyter Notebook???
- Create weighting for z-distribution using cam's previous method
- Determine temp of target during run (dependent on E)
 - Determine appropriate alloy if need be
- Make more plots
- Calculate efficiencies and detector acceptance to compare with previous monte carlo from Yale presentation / thesis.