
 1

SIMP Reach Estimates and Beginning Analysis

Analysis Workshop 10/19/22
Alic Spellman

 2

Introduction

● SIMP theory and expected signal calculation overview
● New combined reach estimate plots using code from [1] Cosmology and accelerator tests of strongly interacting dark matter. A.

Berlin, N. Blinov, S. Gori et al.
● Would like to move towards getting plots officially approved
● Started SIMPs analysis a few weeks back (progress was delayed)
● Found de-correlation between Track and matched Cluster timing that was not present in 2016 pass4 recon
● Started digging into Track/StripCluster/RawHit timing...ultimately not a serious issue and will press forward with analysis

 3

Combined SIMP Reach Estimates
(2016+2019+2021 Runs)

 4

SIMP Theory Overview

● SIMP model introduces dark sector mesons (analogous to SM) that
couple to A’

● HPS is sensitive to A’ prompt decay A’ V→ DπD

– πD is invisible
– Two of the five VD states (spin-1 neutral vector mesons ρD and

φD) are visible to HPS via 2-body decay VD e→ +e-

● SIMP model parameters: m D π mVD m Dπ /f D π mA’ ε αD

● Our reach estimate follows two benchmark cases and enforces mass
ratios mA’/m π = 3, mV/mπ = 1.8, and αD = 0.1

● Benchmark cases fix m Dπ /f D π = 4 and mπ Dπ /f D π = 3

● For detailed review of SIMPs Reach Estimates, see talk here
– https://confluence.slac.stanford.edu/pages/viewpage.action?

pageId=349284806

2-body decay
visible to HPS

 5

SIMP Expected Signal Calculation

● A’ cross section for a particular mA’ is related to the differential cross-section of radiative tridents evaluated at the A’ mass

● Multiplying by luminosity on both sides give the total generated A’ rate

● Expected SIMP Signal Rate calculated by applying signal branching ratios and prompt/displaced acceptance terms to total
generated A’ rate

Radiative tridents are not real process
However can be estimated via MC

AVD is A’ signal acceptance for prompt VD decay

Accounts for displaced
VD decay acceptance

Fraction of final selected VD vertices as
function of truth vertex z position

 6

SIMP Expected Signal Calculation Continued

● Evaluate the total differential radiative trident rate for a given A’ mass inside Control Region
● This rate is proportional to the total number of generated A’s of mA’

● Each of the three terms (colored boxes) are measured in MC
● “Radiative Fraction” (frad)

● ratio of selected radiative tridents to reconstructed background vertices in Control Region
● measured purely in MC

● “Total Radiative Acceptance” () ζ
● ratio of selected to generated radiative tridents in Control Region
● measured purely in MC

● “Reconstructed Background Rate”
● number of Wab+Tritrig vertices that pass selection in the Control Region
● Estimated in MC using approximate Lumi for reach estimate
● Also measurable in data

Expected A’ Signal Rate

 7

SIMP Expected Signal Calculation Continued
● For each A’ mass, calculate total generated A’ rate using radiative fraction, total radiative acceptance, and background rate
● Measure the VD Vertex Selection Efficiency F(z) for the VD mass corresponding to the A’ mass

Neutral VD to visible decay
rates

● Evaluate Efficiency Vertex integral and calculate expected A’ signal rate for both dark vector mesons (and)ρ φ independently
● Total Expected Signal is sum of expected signal for both and ρ φ
● Make reach estimate conservative by using 1 sigma downward fluctuation of F(z) in Effvtx integral, and integrating from Zcut instead of target

Two neutral Dark Vectors (and) contribute to Expected Signalρ φ
● The rate of A’ neutral V→ D + πD is different for and ρ φ
● The lifetimes of and are different ρ φ
● A’ Neutral V→ D rate is different for and ρ φ

Radiative Fraction

Total Rad Acceptance

Reco Background Rate

BR(A’ V→ DπD) and BR(VD e→ +e-)

Efficiency Vertex

 8

Exclusion Contour Method

● Top plot shows HPS 2021 Expected Signal Rates using
conservative method

● Make exclusion contour by finding which values of , for ε
each A’ mass, the Total Expected Signal (Nsig) goes above
and then below 2.3 events

● Bottom plot shows Exclusion Contour for 2021 Lumi for the
benchmark case where mπ/fπ = 4 π

● The Combined reach estimate for the three HPS runs 2016,
2019, and 2021 adds the Total Expected Signal for each run
at each value of ε and A’ mass

● The Combined Exclusion Contour is formed by finding
which values of ε, for each A’ mass, Nsig_2016 + Nsig_2019 +
Nsig_2021 goes above, and then below, 2.3 events…

● Expected Signal and combined contours shown next slide...

2021
mπ/fπ = 4π

Exclusion Contour mπ/fπ = 4π

 9

Combined SIMP Reach Estimate

mπ/fπ = 4π

All Runs
2016
2019
2021

mπ/fπ = 3

Exclusion Contour mπ/fπ = 4π

Exclusion Contour mπ/fπ = 3

All Runs
2019
2021

 10

Combined Reach Estimate Final Plots
● Plotting code used in ref [1]
● HPS sensitivity plotted using combined reach estimate

contour values for the two benchmark cases
● Plots show existing constraints and HPS sensitivity to

signals of strongly interacting hidden sectors where only
hidden sector vector mesons (VD) that mix with A’ can
decay to SM particles via 2-body VD decay

● Shaded regions represent existing exclusions
– Orsay and E137 are beam dumps sensitive to long-

lived decays to SM
– BaBar sets upper limits on A’ coupling to e+e-

● Hidden sector pions make up all of dark matter along
solid(dashed) black lines for mV/mπ =1.8(1.6), while dm is
overabundant below lines

● Red HPS 2016 contour shows sensitivity for 2016 SIMP
analysis

 11

SIMPs Reach Estimate Conclusion

● Combined SIMPs Reach Estimate for runs 2016, 2019, 2021 is completed and final reach plots exist
● Will work on writing documentation for reach estimate process and plotting code
● Intend to request official approval of reach plots

 12

Track Time Changes
Hps-java-4.2 and Hps-java-5.1

 13

Introduction
● Previously showed when re-reconstructing pass4 data with standard SeedTracker_GBL recon steering-file, Track time

resolution is improved, but correlation between Track and matched Ecal Cluster times gets worse
– Selected vertex Track-Cluster dt is wider than expected
– Re-reco track time biased

● Original pass4 data recon used hps-java 4.2
● Current re-recon uses hps-java 5.1
● Want to figure out what’s causing change in track time between hps-java versions, and see if we can recover the correlation

between track time and matched cluster time
● Ran re-reconstruction on one file from pass4 data for different cases

– Hps-java-4.2_GBL (standard PhysicsRun2016FullRecon.lcism using SeedTracker+GBL)
– Hps-java-5.1_GBL (standard PhysicsRun2016FullRecon.lcism using SeedTracker+GBL)
– Hps-java-5.1_GBL_noClusterRFTimeCorr (removed ClusterRFTimeCorrectionDriver from steering-file)
– Hps-java-5.1_GBL_rm_cams_subTT (removed subtractTriggerTime code added by Cam)
– Hps-java-5.1_KF (standard PhysicsRun2016FullRecon.lcsim using KalmanFullTracks)
– Hps-java-5.1_KF_noClusterRFTimeCorr (removed ClusterRFTimeCorrectionDriver from steering-file)
– Hps-java-5.1_KF_rm_cams_subTT (removed subtractTriggerTime code added by Cam)
– Hps-java-5.1_KF_MinDistanceMatcher (using Minimum Distance Track-Cluster matching algo)

 14

● Top right plot compares selected vertex electron track times
– “original” refers to hps-java-4.2 reco
– Improved track time resolution, shift in bias

● Bottom right plot shows matched Track-Cluster time residuals
– Re-recon cases have wider dt

● Bottom left two plots show track-time v cluster-time
– Hps-java-4.2 recon (“original”) shows linear correlation

between matched Track and Cluster times
– Hps-java-5.1 recon de-correlated

● What changed between versions 4.2 and 5.1 that cause this?

 15

● Reconstructed one file from run
7800 for the various cases
discussed in intro

● Plot shows vertex selection
cutflow used to compare

● Not clear why the ele/pos cluster
time difference cut cuts more
vertices for KF-MinDistance
than KF-Nsigma…

● Next slides look at track and
cluster times

Didn’t expect red
and black to diverge

here...

 16

Hps-java-4.2 Hps-java-5.1

Hps-java-5.1
KF NSigma

Hps-java-5.1
KF MinDist

 17

● (Top right) Cluster time distribution not different between reconstruction
configurations

● (Bottom left) Track times do change...
● The ClusterRFTimeCorrectionDriver clearly improves the track time

resolution
● The ‘subtractTriggerTime’ code added between hps-java versions 4.2 and

5.1 appears to just displace the track time distribution, shifting the bias
from ~0ns to ~2ns

● Comparing the solid green line (v4.2) to the solid blue line (v5.1) shows a
large improvement in track time resolution

 18

Hps-java-5.1
rm_cams_subTT

Hps-java-4.2

All
GBL Tracks

Track-cluster
times well
correlated

Hps-java-5.1
noClusterRFTimeCorr

Track-cluster
times well
correlated

Hps-java-5.1
Track-cluster

times
de-correlated

Track-cluster
times

de-correlated

 19

● Plot shows selected vertex matched
Track-Cluster pair time residuals

● Hps-java-4.2, and hps-java-5.1 where
the ClusterRFTimeCorrectionDriver
is disabled (GBL and KF), both
have more peaked time residuals

● Other cases show much wider
distribution in track-cluster time
residuals

● We’ve seen that the
ClusterRFTimeCorrectionDriver
significantly improves the track time
resolution, but it is de-correlating the
track-cluster pair times...

 20

ClusterRFTimeCorrDriver

● Driver chooses highest energy cluster within trigger time window in an event and uses the RF time to set
the trigger time of the event

● Start by getting the “ideal” trigger time window for run from conditions db
● Read in event ecal clusters, choose highest energy cluster in trigger time window
● Select highest seed energy cluster in time window
● Read in rf time using RFHits
● Relationship between rf-time and selected cluster time defined as “jitter”, used to modify selected cluster

time
● “TriggerTime” collection is created which relates jitter-modified selected cluster time and the cluster seeds
● TriggerTime collection is used in RawTrackerHitFitterDriver under “subtractRFTime” setting
● RF time jitter is read in from collection and applied to the hit fits T0 parameter for the event
● ...maybe these jitter corrections are only being applied to tracker hits, but should also be applied to the

clusters…?

 21

● The following plots are at track level (not tracks on vertex)
● Plots show electron track times v momentum for GBL (Top) and

KF (Bot Right) with no cuts
● Bottom left plot shows track selection cutflow…

● Built-in +-10ns cut on GBL Tracks must be included for KF
Tracks

● Turns out this is why KF Tracks show a larger FEE peak in
past studies…

● Disappears when cutting on time...whoops…

 22

● Plots show electron (Top) and positron (Bot)
track momentum

● Past studies have shown high fake rate for
low momentum GBL tracks, so not
surprising to see less KF tracks in that
region

● Note that the FEE peaks are close for GBL
and KF, whereas I’ve previously shown more
KF Fee’s...turns out that was due to baked
in GBL track time cut...again whoops...

 23

● Plots show electron and positron track times
● Shows essentially same thing as the vertex level track times

 24

● Hps-java-4.2 GBL Tracks
(Nsigma Matcher)

● Hps-java-5.1 GBL Tracks
(Nsigma Matcher)

● Hps-java-5.1 KF Tracks
(Nsigma Matcher)

● Next slide zooms into
Gaussian core to better
compare resolutions

 25

● Hps-java-4.2 GBL Tracks
(Nsigma Matcher)

● Hps-java-5.1 GBL Tracks
(Nsigma Matcher)

● Hps-java-5.1 KF Tracks
(Nsigma Matcher)

● Electron track time resolution
improves between v4.2 and
v5.1

● KF time resolution slightly
worse than GBL

● Positron track time resolution
less improved (if at all)

 26

● Plots show strip clusters on tracks
● Note that KF tracks have twice as many

strip clusters as GBL
● Differences between each case are same as

already discussed…
● Top plot shows electron strip cluster times

– Shoulder on left side of track time
distribution present in all cases...

What’s going on
here?

 27

Shoulder appears
for larger amplitude

rawtracker hits

● Bottom plot shows track rawhits amplitude
vs t0 for hits fit with a single pulse
(hps-java-v5.1)

● Larger amplitude hits have shoulder ~ -8ns

 28

Summary and Conclusion

● The ClusterRFTimeCorrectionDriver is crucial to improving track time resolution, but is causing a
de-correlation between Track and Cluster pair times
– Seems to involve the “jitter” corrections being applied to hit fit T0

● There’s a shoulder in electron track time ~-8ns that seems to be from large amplitude strip hits
– Can investigate further at hit level…

● The “subtractTriggerTime” code added in between v4.2 and v5.1 seems to just displace the track
times, and should probably not be applied to 2016 data at least…

● There are slightly more vertices for KF tracks using Nsigma Track-Cluster matcher than the
“MinDistance” matcher...could be due to the track time shift or Track-Cluster dt de-correlation...will
look into this once the timing is figured out…

● Still working on understanding the track time changes
● Going to move past this stuff for now and start developing analysis tools

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

