# LLRF & Controls Cold Copper Collider Workshop

Ryan Herbst TID Instrumentation SLAC National Accelerator Laboratory

| U.S. DEPARTMENT OF | Stanford<br>University |
|--------------------|------------------------|
|--------------------|------------------------|

10/13/2022

1



- TID Structure
  - Platforms Choices
- History Of Controls Development For LCLS2
  - ATCA Platform
  - Firmware/Software Modular CO-Design
  - Common Platform Software
  - LLRF Specific
- DARPA Accell LLRF Development
  - Requirements
  - Next Generation RFSOC Platform
  - Firmware / Software Structure
- Conclusions

### **TID Overview**





## **TID ID & CDS Deliver A Variety Of Platforms**

#### **Crate based solutions**

- Advanced Telecommunications Computing Architecture (ATCA)
  - Growing multi-billion dollar market
- Backplane carries all global signals
- 1-14 slot crates available.





SLAC





#### "Pizza Boxes"

Network attached devices. (BPM)

In vacuum

#### **Embedded** systems

- Supports stand-alone / embedded cards
- Commercial and custom cards available.





- HPS supports the following sub-systems for LCLS2
  - Timing
    - Per bunch experimental timing
    - Precision laser locker timing
    - Phase Reference Line distribution
  - Machine Protection System (MPS)
  - Beam Position Monitor System (BPM)
  - Bunch Charge Monitor System (BCM)
  - Bunch Length Monitor System (BLM)
  - LLRF Demonstration System
- Process 1Mhz beamline data in realtime firmware

# ATCA Common Controls Platform LCLS1 / LCLS2 / FACET



Each carrier supports 2 AMC application cards

- **Carrier card**: FPGA, memory, backplane connections
- AMC cards: ADCs, DACs, high performance front end electronics
- **RTM**: General purpose IO, extra networks, miscellaneous

SL

# LCLS / LCLS2 / FACET Control Hardware



### LCSL-2 BPM board





**TES** detector RF board 4000 channels

Generic ADC/DAC For machine protection sys.



SLAC ATCA provides the space, power & cooling required for LCLS-2!



10/40Gbps Ethernet Backplane



## **Common Platform Software**



Integration with higher level DAQ and slow-control systems at experiment facilities, allowing application specific plugins to be developed and added to our software platform.

- Can be embedded into any C++ application
  - For Heavy Photon Search (JLAB) we integrated into CODA
  - LCLS2 DAQ integration
- Interface libraries for a variety of controls platforms
  - EPICS PV access layer
  - Karabo (EuXFEL) Python API auto generation
  - Fermilab ARTDAQ
  - Ignition controls platform for LZ
- Variety of interfaces
  - Shared memory interface for key/value pair access
  - Mysql mirror for key/value monitoring and control
  - ZeroMq based socket control in development
- Easy early testing and standalone debug
  - Python command line scripting
  - Auto generated GUI
- No assumptions made about higher level software choice!



### **Accelerator Controls High Level Applications**





High Level Physics applications diagnose and optimise the accelerator, combining model, geometry, PV names and PV values.





SLAC

# LCLS / FACET Low Level RF Controller

- 2 AMC cards on a single carrier
  - (receiver shown).
- 10X RF input channels
- 1X RF output channel
- 2X fast DC ADC (370Ms/s)
- 300MHz to 3GHz range with different oscillator daughter cards
- Clocks and LO phase locked to timing reference system.
- FPGA provides closed loop RF control.
- Very low measurement noise
  - 4.3 femtoseconds RMS in 1MHz bandwidth
  - 1 femtosecond RMS in 1KHz bandwidth
- Status: Operational on LCLS LINAC





SLAC

# **DARPA ACCEL LLRF System Requirements**

- Mechanical: Physically compact and noise resistant
- RF Frequency: 5712 MHz
- Number of klystrons: 26 (52 cavities)
  - $\circ$  1 buncher
- LLRF channels per klystron
  - 1X 300W (target 1KW) drive
  - 2X receivers: forward from klystron and reflected from dual cavities
- LLRF pulse length: <= 5 microseconds (1 expected)
- LLRF pulse repetition rate <= 60Hz
- LLRF stability <1°, <1% variation RMS shot to shot
- LLRF pulse shaping: Arbitrary I/Q modulation with BW > 10MHz

SLAC

## **Next Generation Hardware (RFSOC)**



Example commercial RFSoC board: Pentek Quartz 6003

- 2.5x4 inches
- Includes 16Gbyte DRAM
- Similar boards available from other manufacturers

#### RFSoC integrates full digital radio system on a chip

- 8X 5Gs/s 14 bit ADC, 6GHz analog bandwidth
- 8X 10Gs/s 14 bit DAC 6GHz analog bandwidth
- Programmable logic >4700 DSP slices
- CPU: quad core ARM processor + Dual core real time ARM processor
- Memory management, system management, high speed serial, etc.
- Everything needed for a LLRF system on a single chip!
- Allows for direct sampling without external analog up and down converters

Note that initial testing can be done with Xilinx evaluation boards.

- Lower cost, simpler electrical / mechanical interface
- Code can easily be ported to compact boards

# **RFSOC Performance Testing**



#### Evaluation board tested at SLAC

Xilinx Gen3 RFSoC board

- DAC operate in 2<sup>nd</sup> Nyquist band
- ADC operated in 5<sup>th</sup> Nyquist band



#### Amplitude noise measurement

 $1\,microsecond$  loopback test

 RMS amplitude variation during pulse and pulse to pulse meets requirements



#### Phase noise measurement

 $1\,microsecond$  loopback test

• RMS phase variation during pulse and pulse to pulse meets requirements

# **DARPA ACCEL Solid State Amplifier**



SLAC

Output power from the last stage amp



Measured Performance: 400W

### **GaN Amplifier**

Wolfspeed CGHV59350

- 5.2-5.9GHz, 350W pulsed output
- 11dB gain
- 50V drain voltage

### Tested at SLAC

400W output power measured

- 1 microsecond pulse
- Integrated board under development

### **DARPA ACCEL LLRF Firmware / Software**



-SLAC

# **C3 LLRF System Requirements**

- RF Frequency: 5712 MHz
- Number of klystrons: 18
  - 4 S-Band bunchers
- LLRF channels per klystron
  - 1 drive 300W (target 1KW) drive
  - 2X receivers: forward and reflected
- LLRF pulse length: <= 5 microseconds (1 expected)
- LLRF pulse repetition rate <= 60Hz (demonstrator)
- LLRF stability <1°, <1% variation RMS shot to shot
- LLRF pulse shaping: Arbitrary I/Q modulation with BW > 10MHz

• Good match to existing DARPA ACCEL requirements



- Goals for demonstrator are to use existing hardware, firmware & software as much as possible
  - Designs will be optimized for full accelerator post demonstrator

- TID has a LLRF solution compatible with C3 demonstrator requirements
  - RFSOC based LLRF design deployed for DARPA ACCEL meets C3 requirements

- We have both hardware and a framework for controls hardware & software
  - Team is ready to collaborate on requirements and both short term and long term controls & LLRF solutions