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Overview

e Positron sources are a critical element of future Linear Colliders. The demand
on the source is characterized by e*/s required at the IP:
o ILC-250: 1.3x10 e*/s
o CLIC-380: 8.8 x 10" e*/s
o (C3-250: 1.0 x 10 e*/s

e Polarized positron sources are challenging for 250 GeV CM energy.
o Limited by beam energy in undulator (nhominal 150 GeV).
o Conventional (electron-driven) sources are considered as well.

e We canexplore novel targets, sources, and schemes for positron generation in
preparation for a future Linear Collider.
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Polarized Positron Production
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The undulator-based, polarized production scheme is the most
challenging for the ILC target (highest peak power).
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Target Wheel

A Positron Target Concept for the ILC, The ILC positron target cooled by thermal radiation,
M. Breidenbach et al, ICHEP 2016 S. Riemann et al, arXiv:1801.10565

Bearingless Hysteresis Motors
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The titanium target wheel in the undulator scheme is well-studied,
but there are open topics, such as demonstration of the
magnetically-levitated target.




Alternative Polarized-Positron Schemes

Polarized Bremsstrahlung
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Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies, Laser Undulator

D. Abbott et al. (PEPPo Collaboration) PRL (2016)
(Compton scattering) ¢ beam
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~ Efficient Propagation of Polarization from Laser Photons to Positrons through
= B o\ Compton Scattering and Electron-Positron Pair Creation, T. Omori et al. PRI (2006)



New ldeas for Targets

e Targets are characterized by their ability to withstand
powerful beam fluxes.
e The key figure-of-merit is Peak Energy Deposition Density
(PEDD).

o Forsolid targets, PEDD should be less than 35 J/g.
e The cooling mechanism s a key to long-term survivability.
e Liquid metal targets can withstand large PEDD, but they are
difficult to work with (toxic).

Degraded section of SLC positron target
V. Bharadwaj, et al. WPAHO019 PAC 2001

Is there a safe alternative to liquid metal targets?
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Liquid Xenon Targets (with M. Varverakis, CalPoly)

Why ligquid Xenon (LXe)?

e Verydense liquid with modest radiation length.
The maximum PEDD is determined by the Heat of Vaporization.
o AH=12.6kJ/mol —PEDD__ ~100 J/g
o Roughly 3X PEDD for solid targets!
e Builtin cooling mechanism.
o LXetemperature=161K
o Required flow rate for ILC parameters (conventional) is 0.3 L/s

e Also, we have LXe experts at SLAC...

LUX-ZEPLIN Detecto7r
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Normalized Positron Yield

GEANT Simulations for LXe (M. Varverakis, CalPoly)
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Possible to match yield of conventional targets with 4.5 radiation lengths of LXe.
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L Xe Flow Rate Considerations for C3

A single C3 train deposits 20 J/g PEDD in the LXe.

e 5bunch trains required to hit PEDD limit.
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~10mm Radius
Beryllium Window
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133 bunchesin 0.7 us 133 bunchesin 0.7 us

N /
Y

8.33 ms between trains Minimum flow rate (replace LXe every 5 trains) = 0.06 L/s
Maximum flow rate (replace LXe every train) = 0.3 L/s
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Compact Positron Sources (with R. Hessami, Stanford)
ETH Lab f
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e |[t's not easy to get positron beams for
testing, but compact positron sources
for non-HEP applications exist!

e A Penning-Malmberg trapisusedto
accumulate and cool positrons from a
radioactive source.

e The positrons are naturally polarized
because they are produced by s-decays
of an 22Na source.
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Compact Positron Sources (with R. Hessami, Stanford)

e PMtrapsaredivided into stages and
use a buffer gas to cool the positrons.
e Theintrinsic emittance is proportional

to positron temperature in the trap. sor
o Possible toreach 100 nm-scale
emittance at room temperature.
o Lower emittances are possible with

n
o

potential (V)

o
T

cryo-cooling. 20 ; . . ;
e Thebeam is “magnetized” because the = S ©
cooling occurs in a solenoid field.
o Naturally gives flat-beam emittance.
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Compact Positron Sources (with R. Hessami, Stanford)

e Canwe preserve the low emittance of 1 meter-long 3 GHz Cavity _
the beam after extraction from the )

trap? 100 kV Electrostatic <25
e Canwe compress the beam temporally Accelerator g
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Challenge for the Compact Source

e Only 107 e*/s from the #?Na source.
e GBAR achieves 10%°e*/s by generating
positrons with a target before trapping

them.
o Thedrawback is that thereis no
positron polarization.

e Canwerecover polarization using the
polarized bremsstrahlung concept?

e Canwe multiplex the devices to achieve
the desired number of e*/s?
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C3: A “Cool” Route to the Higgs Boson and Beyond,
C3 W|thOUt Damplng Ring57 M. Bei et al. arXiv:2110.15800 (2021)
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C3 without Damping Rings?

C3: A “Cool” Route to the Higgs Boson and Beyond,
M. Bei et al. arXiv:2110.15800 (2021)
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Cost savings of roughly V4 of the project!




Conclusion

e Further development of positron source technology can aid a future

collider in ways both small and large.
e We have the opportunity to do some of this work at SLAC, either as

standalone projects or as part of a C3 demo facility.

Thanks!
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