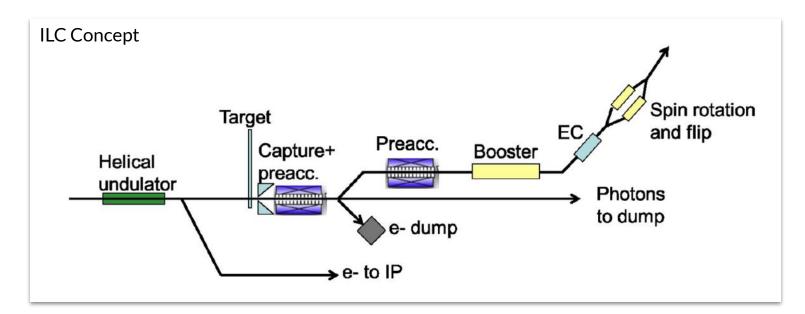
Positron Source Concepts

C³ Workshop

Spencer Gessner Staff Scientist

October 13, 2022

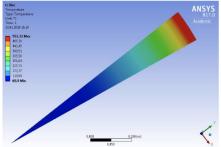


- Positron sources are a critical element of future Linear Colliders. The demand on the source is characterized by *e*⁺/s required at the IP:
 - ILC-250: $1.3 \times 10^{14} e^{+/s}$
 - CLIC-380: $8.8 \times 10^{13} e^{+/s}$
 - $C^{3}-250$: $1.0 \times 10^{14} e^{+/s}$
- Polarized positron sources are challenging for 250 GeV CM energy.
 - Limited by beam energy in undulator (nominal 150 GeV).
 - Conventional (electron-driven) sources are considered as well.

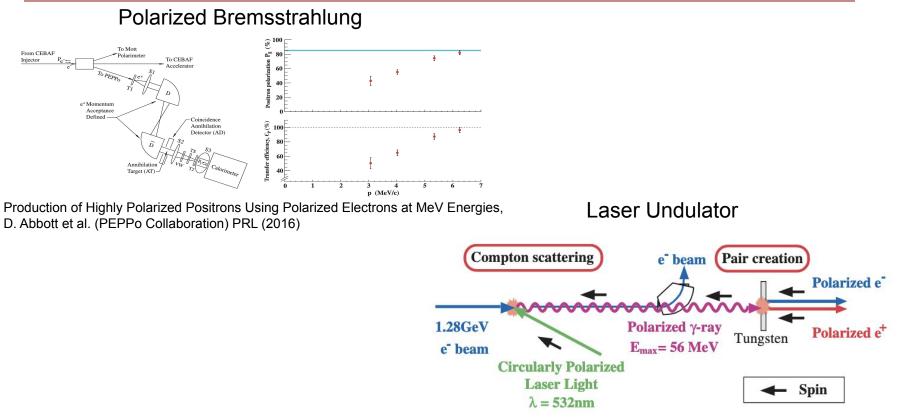
• We can explore novel targets, sources, and schemes for positron generation in preparation for a future Linear Collider.

Polarized Positron Production

The undulator-based, polarized production scheme is the most challenging for the ILC target (highest peak power).


Target Wheel

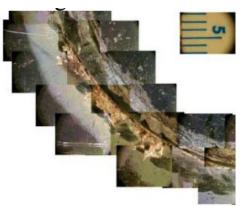
A Positron Target Concept for the ILC, M. Breidenbach et al, ICHEP 2016



The titanium target wheel in the undulator scheme is well-studied, but there are open topics, such as demonstration of the magnetically-levitated target. The ILC positron target cooled by thermal radiation, S. Riemann et al, arXiv:1801.10565

Alternative Polarized-Positron Schemes

Efficient Propagation of Polarization from Laser Photons to Positrons through Compton Scattering and Electron-Positron Pair Creation, T. Omori et al. PRI⁵ (2006)

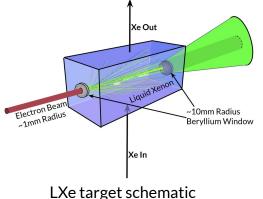

New Ideas for Targets

- Targets are characterized by their ability to withstand powerful beam fluxes.
- The key figure-of-merit is Peak Energy Deposition Density (PEDD).
 - For solid targets, PEDD should be less than 35 J/g.

Is there a safe alternative to liquid metal targets?

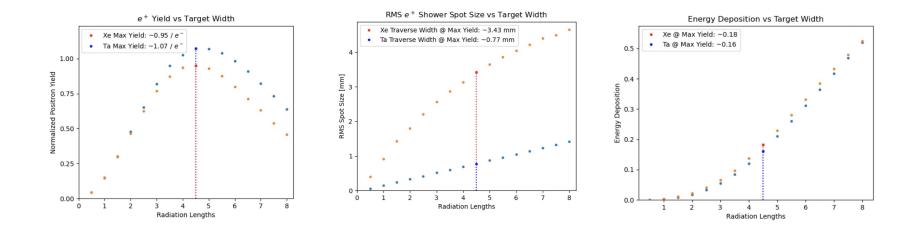
- The cooling mechanism is a key to long-term survivability.
- Liquid metal targets can withstand large PEDD, but they are difficult to work with (toxic).

Degraded section of SLC positron target V. Bharadwaj, et al. WPAH019 PAC 2001



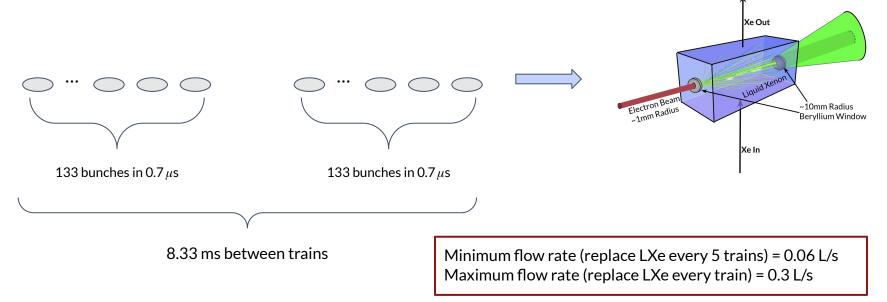
Liquid Xenon Targets (with M. Varverakis, CalPoly)

Why liquid Xenon (LXe)?


- Very dense liquid with modest radiation length.
- The maximum PEDD is determined by the Heat of Vaporization.
 - $\circ \quad \Delta H = 12.6 \text{ kJ/mol} \rightarrow \text{PEDD}_{\text{max}} \sim 100 \text{ J/g}$
 - Roughly 3X PEDD for solid targets!
- Built in cooling mechanism.
 - \circ LXe temperature = 161 K
 - \circ ~ Required flow rate for ILC parameters (conventional) is 0.3 L/s ~

• Also, we have LXe experts at SLAC...

GEANT Simulations for LXe (M. Varverakis, CalPoly)

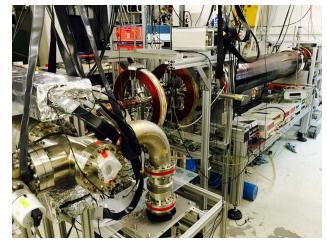


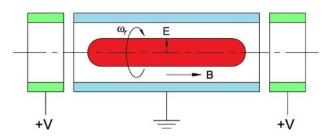
Possible to match yield of conventional targets with 4.5 radiation lengths of LXe.

LXe Flow Rate Considerations for C³

A single C^3 train deposits 20 J/g PEDD in the LXe.

• 5 bunch trains required to hit PEDD limit.

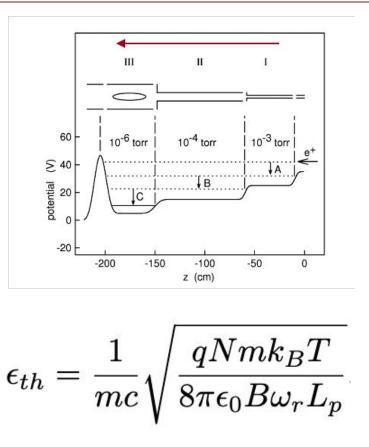



Compact Positron Sources (with R. Hessami, Stanford)

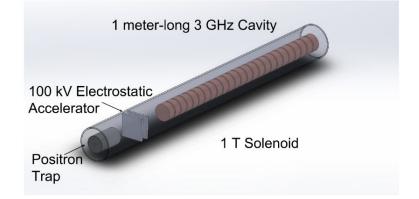
- It's not easy to get positron beams for testing, but compact positron sources for non-HEP applications exist!
- A Penning-Malmberg trap is used to accumulate and cool positrons from a radioactive source.
- The positrons are naturally polarized because they are produced by β-decays of an ²²Na source.

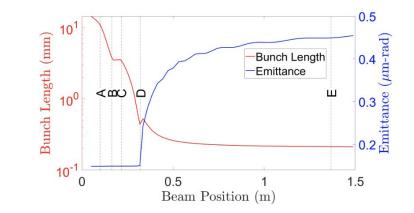
SL AC

ETH Lab for Positronium Physics



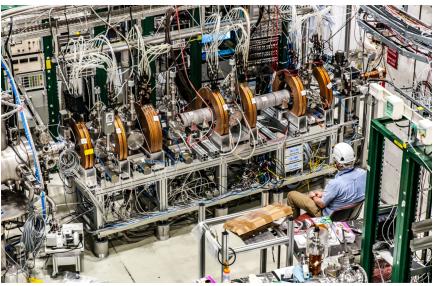
Penning-Malmberg Trap


Compact Positron Sources (with R. Hessami, Stanford)


- PM traps are divided into stages and use a buffer gas to cool the positrons.
- The intrinsic emittance is proportional to positron temperature in the trap.
 - Possible to reach 100 nm-scale emittance at room temperature.
 - Lower emittances are possible with cryo-cooling.
- The beam is "magnetized" because the cooling occurs in a solenoid field.
 - Naturally gives flat-beam emittance.

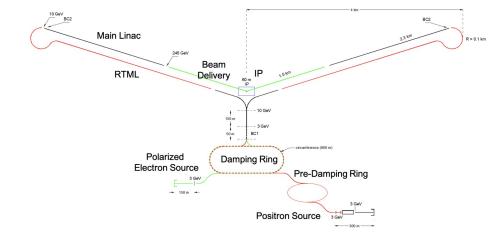
Compact Positron Sources (with R. Hessami, Stanford)

- Can we preserve the low emittance of the beam after extraction from the trap?
- Can we compress the beam temporally for injection into an accelerator?



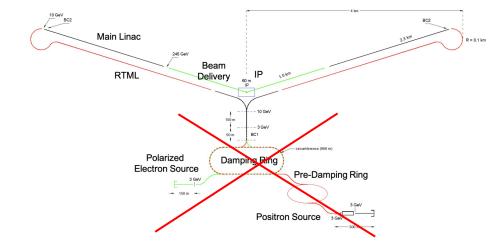
Challenge for the Compact Source

- Only $10^7 e^+$ /s from the ²²Na source.
- GBAR achieves $10^{10} e^+$ /s by generating positrons with a target before trapping them.
 - The drawback is that there is no positron polarization.


- Can we recover polarization using the polarized bremsstrahlung concept?
- Can we multiplex the devices to achieve the desired number of e^+/s ?

GBAR Experiment at CERN

C³ without Damping Rings?


C³ : A "Cool" Route to the Higgs Boson and Beyond, M. Bei et al. arXiv:2110.15800 (2021)

	Sub-Domain	%	%
Sources	Injectors	8	35
	Damping Rings	12	
	Beam Transport	15	
Main Linac	Cryomodule	10	33
	C-band Klystron	23	
BDS	Beam Delivery and Final Focus	8	13
	IR	5	
Support Infrastructure	Civil Engineer	5	19
	Common Facilities	11	
	Cryo-plant	3	
Total	3.7B\$	100	100

C³ without Damping Rings?

C³ : A "Cool" Route to the Higgs Boson and Beyond, M. Bei et al. arXiv:2110.15800 (2021)

	Sub-Domain	%	%
Sources	Injectors	8	-35
	Damping Rings	12	
	Beam Transport	15	
Main Linac	Cryomodule	10	33
	C-band Klystron	23	
BDS	Beam Delivery and Final Focus	8	13
	IR	5	
Support Infrastructure	Civil Engineer	5	19
NO2 038	Common Facilities	11	
	Cryo-plant	3	
Total	3.7B\$	100	100

Cost savings of roughly $\frac{1}{3}$ of the project!

- Further development of positron source technology can aid a future collider in ways both small and large.
- We have the opportunity to do some of this work at SLAC, either as standalone projects or as part of a C³ demo facility.

Thanks!