

What's Next for the Energy Frontier?

Physics goals beyond HL-LHC:

- 1. Establish Yukawa couplings to light flavor ⇒ needs precision
- 2. Establish self-coupling ⇒ needs high energy

Recap from Snowmass

C³ on the list of possible Higgs factories

Overview Timetable Registration Participant List

Next workshop October 13-14, 2022 at SLAC - stay tuned for info in the coming weeks.

A program to build a lepton-collider Higgs factory, to precisely measure the couplings of the Higgs boson to other particles, followed by a higher energy run to establish the Higgs self-coupling and expand the new physics reach, is widely recognized as a primary focus of modern particle physics. We propose a strategy that focuses on a new technology and preliminary estimates suggest that can lead to a compact, affordable machine... the Cool Copper Collider (C^3).

This page collects the documents about C^3 strategy and R&D plans.

Please register if you would like to endorse/support the C^3 strategy for Snowmass 2021. With registration your name will be added to the strategy document as an endorser.

Strategy for Understanding the Higgs Physics: The Cool Copper Collider

C³ Demonstration Research and Development Plan

C^3: A "Cool" Route to the Higgs Boson and Beyond

There is a distribution list - please let us know if you would like to be added to it to receive updates about C^3.

c3-developments@slac.stanford.edu

https://indico.slac.stanford.edu/event/7155/overview

Physics about browse press collections Q Search articles

RESEARCH NEWS

A "Retro" Collider Design for a Higgs **Factory**

October 6, 2022 • Physics 15, 155

The Cool Copper Collider is a new proposal for a Higgs-producing linear collider that would be more compact than other collider designs.

A prototype version of the Cool Copper Collider. The photo shows the central region where the particle beams would pass.

https://physics.aps.org/articles/v15/155

C³ at the Snowmass meeting in Seattle

Good community support during Snowmass

- C³ has been evaluated independently from the Implementation Task Force along with the other proposals
 - Their findings are mostly consistent with our estimates
- Strong engagement and support from EF both during the plenaries and in the report

https://snowmass21.org/ media/energy/snowmass-energy fron tier report-sep7-2022.pdf

The US Energy Frontier community proposes to develop plans to site a e^+e^- collider in the US. A muon collider remains a highly appealing option for the US, and is complementary to a Higgs Factory. For example, some options which are considered as attractive opportunities for building a domestic EF collider program are listed below:

- A US-sited linear e^+e^- (ILC/CCC) Collider
- Hosting a 10 TeV range muon collider

Text from the EF report - sec 2.8

ullet Exploring other e^+e^- collider options to fully utilize the Fermilab site

				>
Proposal Name	Power	Size	Complexity	Radiation
	Consumption			Mitigation
FCC-ee (0.24 TeV)	280	$91~\mathrm{km}$	I	I
CEPC (0.24 TeV)	340	$100~\mathrm{km}$	I	I
ILC (0.25 TeV)	140	$14~\mathrm{km}$	I	I
CLIC (0.38 TeV)	170	$13.4~\mathrm{km}$	II	I
CCC (0.25 TeV)	150	$3.7~\mathrm{km}$	I	I
CERC (0.24 TeV)	90	$100~\mathrm{km}$	II	I
ReLiC (0.24 TeV)	370	$20~\mathrm{km}$	II	I
ERLC (0.24 TeV)	250	$60~\mathrm{km}$	II	I
XCC (0.125 TeV)	90	$1.4~\mathrm{km}$	II	I
MC (0.13 TeV)	200	$3~\mathrm{km}$	I	II
ILC (3 TeV)	~400	59 km	II	II
CLIC (3 TeV)	\sim 550	$42~\mathrm{km}$	III	II
CCC (3 TeV)	~700	$26.8~\mathrm{km}$	II	II
ReLiC (3 TeV)	~780	$360~\mathrm{km}$	III	I
MC (3 TeV)	~230	$10-20~\mathrm{km}$	II	III
LWFA (3 TeV)	~340	$1.3~\mathrm{km}$	II	I
PWFA (3 TeV)	~230	14 km	II	II
SWFA (3 TeV)	~170	18 km	II	II
MC (14 TeV)	~300	27 km	III	III
LWFA $\gamma\gamma$ (15 TeV)	~210	$6.6~\mathrm{km}$	III	I
PWFA $\gamma\gamma$ (15 TeV)	~120	$14~\mathrm{km}$	III	II
SWFA $\gamma\gamma$ (15 TeV)	~90	90 km	III	II
FCC-hh (100 TeV)	~560	91 km	II	III
SPPC (125 TeV)	~400	110 km	II	III

2738

From Seattle

Similar message from AF

Accelerator Frontier "Message"

On Colliders: We need an integrated future collider R&D program to engage in the design and to coordinate the development of the next generation collider projects:

- To address in an integrated fashion the technical challenges of promising future collider concepts that are not covered by the existing General Accelerator R&D (GARD) program.
- To enable synergistic U.S. engagement in ongoing global efforts (e.g., FCC, ILC, IMCC)
- To develop collider concepts and proposals for options feasible to be hosted in the U.S. (e.g., CCC, HELEN, Muon Collider, etc)

This week

3

Focus on the plans for demo

- Our R&D demo plan is a 5 years plan towards the completion of the CDR and preparation of the TDR
- We will review of the most recent progress in preparation of the proposal for the demo
 - discussion is important, please contribute with questions and comments
- On Friday we will have an overview of various R&D activities for detectors
- Two dedicated discussions at the end of each day about general strategy towards P5.

Practical information

Coffee breaks are outside this room

Cafeteria is available for lunch

Dinner tonight is at *Trellis at 6pm*

fixed menu with various options (60\$ including taxes and gratuity) https://www.trellisrestaurant.com/

<u>Please confirm with me that you're joining.</u>

