Compact RICH for PID

J. Va'vra, SLAC

This RICH proposal is a part of a larger study by:

A. Albert, M.J. Bass, S.K. Bright-Thonneya, V.M. M. Cairoc, Ch. Damerell, D. Ega~na-Ugrinovic, U. Einhaus, U. Heintz, S. Homiller, S. Kawada, J. Luoh, C. Mantel, P. Meade, J. Monroy, M. Narain, R. S. Orr, J. Reichert, A. Ryd, J. Strube, Dong Su, A. G. Schwartzman, T. Tanabe, J. Tian, E. Usai, J. Va'vra, C. Vernieri, C. C. Young, and R. Zou, ArXiv:2203.07535v2 [hep-ex] 14 Mar 2022

Physics motivation $\pi/K/p$ particle identification

- **General point:** What is the origin of flavor ? Why we have three families ?
- Higgs physics: need to test Higgs coupling to lighter quarks. Use π/K PID to separate strange-initiated jets from u/d (ArXiv: 2203.07535v2, Mar.2022)
- Flavor physics: requires excellent hadron particle identification (separation of π , K, p) to resolve combinatorics + separate decay modes
- SM physics: Plenty of Z, W, top produced! Measure $Z \rightarrow s\overline{s}, Z \rightarrow qq, e^+e^- \rightarrow s\overline{s}, W \rightarrow cs$, etc.

• Additional references:

- Wolfgang Altmannshofer: <u>SSI2021</u> lectures on "Roles of Higgs Sector in Generation & Flavor Problem". Lecture 1: <u>slides</u>, <u>video</u>; Lecture 2: <u>slides</u>, <u>video</u>
- Patrick Meade: <u>SSI 2022</u> lectures on "Fermion Generations". Lecture 1: <u>slides</u>, <u>video</u>; Lecture 2: <u>slides</u>, <u>video</u>
- Su Dong: SLAC Snowmass Higgs WG Mar/2020: <u>Higgs Yukawa Couplings & Fermion Generation Puzzle</u>

Our present RICH design concept

SiPM temperature will be reduced to +2-3°C to reduce the SiPM noise somewhat. The second reduction comes from timing. This requires a good timing resolution at a 100 ps level. From a known trajectory, photon azimuth on Cherenkov ring, track and photon hit times one form a difference: timing between calculated "photon hit & measured photon hit". One may also attempt to correct the smearing effect.

SiPM single photon timing resolution

Gundacker et al. "High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET."*Physics in Medicine & Biology*64.5 (2019): 055012 A. Gola, FBK Foundation Co., Italy, "Status and Perspectives of SiPM", RICH 2022, Edinburgh

- SiPM can reach average single photon timing resolution/pixel of $\sigma \leq 100$ ps.
- SPTR = single photon timing resolution, SPAD = Single photon avalanche diode, an element of SiPM 10/14/22 J. Vavra, SLAC C3 workshop

Photon Detection Efficiency (PDE) of a single SiPM

A.N. Otte et al., NIM A 864(2017)106

• Already now there are better SiPMs with higher PDE (Gola et al. (2019). Sensors, 19(2), 308.)

Photon detection efficiency of single SiPM:

 $\begin{aligned} PDE &= FF \ x \ QE(\lambda) \ x \ P_T(V_{bias}, \lambda) \\ QE(\lambda) - QE \ of \ Si \\ FF - Fill \ factor \ within \ one \ SiPM \\ P_T(V_{bias}, \lambda) - Trigger \ efficiency \end{aligned}$

SiPM array has additional losses due to gaps between pixel elements ! I assumed 65%:

Final efficiency: TMAE vs. SiPMs

• Although CRID operated in a region where refraction index changed more rapidly, its wavelength acceptance was very narrow and therefore the chromatic error was smaller: ~0.4 mrad (TMAE) vs. ~0.85 mrad (SiPM).

PID using Npe and θ_c in our design

- L = 25 cm & 1 bar.
- p/K PID is trivial below 25 GeV/c, becomes more difficult above 30 GeV/c.

Smearing effect in magnetic field

- This effect was small for SLD CRID operating at 0.5 Tesla (~0.5 mrad). It is significant at 5 Tesla for RICH detector with a large radial extent.
- I used two methods to estimate it: (a) Analytical formula, (b) Mathematica code.

I wrote a simple tracking program in Mathematica

- Step through the field, radiate Cherenkov photons when in radiator (100< r <125), reflect them from spherical mirror and find their intersection with a detector plane.
- Use trajectory, ring radius (Cherenkov angle), track hit t₀, photon hit t₁ times to reject background photons, and one may work out algorithm to reduce the smearing effect (?).

To do a calculation I have created a ray tracing model

- Spherical mirrors with R = 50 cm, f = 25 cm.
- Goal of ray tracing was to rotate mirrors, so that the image comes reasonably perpendicularly to SiPM plane.

10/14/22

J. Vavra, SLAC C3 workshop

Cherenkov rings for $\theta_{dip} = 4^{\circ}$ at 20 GeV/c with <u>B = 5 Tesla</u>

• Smearing effect varies as a function of Cherenkov angle azimuth $\boldsymbol{\Phi}_{c}$.

Cherenkov rings for $\theta_{dip} = 4^{\circ}$ at 20 GeV/c with <u>B = 5 Tesla</u>

- **Ring radius:** CherRadius = Sqrt[$(z_{\text{final}}[i] z_0)^2 + (x_{\text{final}}[i] x_0)^2$]
- **Cherenkov angle:** θ_c = CherRadius/(Focallength)

Cherenkov rings for $\theta_{dip} = 4^{\circ}$ at 25 GeV/c with <u>B = 5 Tesla</u>

• Smearing effect varies as a function of Cherenkov angle azimuth $\boldsymbol{\Phi}_{c}$.

Cherenkov rings for $\theta_{dip} = 4^{\circ}$ at 25 GeV/c with <u>B = 5 Tesla</u>

- **Ring radius:** CherRadius = Sqrt[$(z_{\text{final}}[i] z_0)^2 + (x_{\text{final}}[i] x_0)^2$]
- **Cherenkov angle:** θ_c = CherRadius/(Focallength)

Errors in our design vs. SLD CRID

Single photon error source	SiD/ILD RICH detector	SLD CRID detector
	@ 5 Tesla [mrad]	@ 0.5 Tesla [mrad]
Chromatic error	~0.85	~0.4
Pixel size (0.5mmx0.5mm - 3mmx3mm)	0.4 - 2.3	~0.5
Smearing effect due to magnetic field	1.2 - 2.5	~0.5
Mirror alignment	<< 1	~1 (?)
Other systematic errors	<<1	a few mrad
Total single photon error σ_{photon}	1.8 – 3.5	~ 3.4
Total error including systematic effects	-	~ 4.3
Tracking angular error	~0.5	~0.8 [9]
Other variables:		
Npe/ring for β~1	~16	~10 (in gas)
X/Xo	3-4%	>15%

Chromatic, pixel and smearing effect errors contribute to final error as $1/\sqrt{N_{pe}}$, <u>the rest don't !!</u>

PID performance worsens rapidly with increasing total error:

- Designing a good RICH detector at high momentum is a question of minimizing errors.
- Smearing effect and pixels size are the most crucial contribution in this design.

Final performance for our design

 $\sigma_{\theta} = s_{\text{single photon}} / \text{VNpe} \otimes \sigma_{\text{tracking}} = \sqrt{\{\sigma_{\text{chromatic}}^2 + \sigma_{\text{pixel}}^2 + \sigma_{\text{smearing effect}}^2\}} / \text{VNpe} \otimes \sigma_{\text{tracking}}$

 $\sigma_{smearing} = analytical formula, \sigma_{chromatic} \sim 0.85 mrad, pixel size: 3 mm, \sigma_{tracking} \sim 0.5 mrad, L = 25 cm, 1 bar$

• 3σ limit: ~26-28 GeV/c at 2-3 Tesla, and ~22-24 GeV/c at 5 Tesla.

Conclusion

- Our compact RICH design competes well with much larger SLD CRID design.
- 3 sigma π/K PID at ~30 GeV/c is possible at 2-3 Tesla, and at ~25 GeV/c at 5 Tesla.
- Very low mass design: X/Xo ~ 3-4%. Much better than CRID.
- SiPM technology is developing very fast, driven by medical research. In 5 years, all this will be obsolete, and the detector design will improve. This can be used either for reducing radial length, or for improving performance.
- Measuring time to 100 ps will open a new exciting possibilities for analysis of rings.
- Roger Forty produced a design with a better performance, however, assuming 3.5 bar gas pressure. Using his assumptions, I confirmed his result. However, his design may prove to be more difficult to sell to calorimeter people because of higher mass.

Appendix

RICH optical concept was known early

T. Ypsilantis and J. Sequinot, Nucl. Instr. & Meth., 142 (1977) 377

• Ring radius measures Cherenkov angle, independently of track direction.

Barrel CRID in SLD concept was defined around 1983-4

Gaseous RICH – SLD and DELPHI

D. Muller et. al., "Inclusive hadronic production in e+e to at 91.2 GeV using the SLD CRID," talk, unpublished; The SLD collaboration, "Production of p, K, K^o, K^{*o}, f, p, & L^o in hadronic Z^o decays, SLAC-PUB-7766, 1998.

• SLD CRID and Delphi RICH pioneered this type of detector ~40 years ago.

Gas choice

- C_5F_{12} gas at 1 bar requires a detector temperature of 40°C since boiling point of this gas is 31°C at 1 bar. Not very agreeable with the SiPM noise.
- C₄F₁₀ gas at 1 bar allows detector operation at a few degrees °C since boiling point of this gas is -1.9°C at 1 bar. This is presently our preferred choice.
- C_2F_6 gas at 1 bar would allow detector operation even below 0°C since boiling point of this gas is -70.2°C at 1 bar. However, this gas would deliver insufficient number of photoelectrons.
- C_3F_8 gas at 1 bar would allow detector operation at -30 deg C since the boiling point of C_3F_8 is -37 deg C. Still worse performance than C_4F_{10} .

Mirror reflectivity

LHCb collaboration, JINST 3 S08005, 2008

- For calculations in this work, I used Al+Cr+MgF₂ mirror coating.
- This coating was also used by CRID.

• Refraction index of these Freon gas candidates is well understood.

EIC mRICH –SiPM noise

C.P. Wong et. al., NIM A 871, 13 (2017)

- They used Aerogel radiator and SiPM readout, and temperature to reduce the noise.
- Our idea:

Use a track hit & photon hit to make a timing window. Need ~100 ps resolution.

Examples of PID detectors

• Present ILD TPC design separates p/K's at ~20 GeV/c at a level of ~3 σ .

Analytical formula to estimate the smearing effect

Smearing effect due to track bending = f(B)

Analytical formula:
$$\sigma_{\theta} \sim \frac{2}{\sqrt{12}} \sim [2 \arcsin[\frac{\left(\frac{L}{2}\right)}{R}] \frac{1}{\sqrt{12}}$$

L = 15 cm

• A subsequent study with Mathematica code has showed that it is more complicated as smearing error depends on Cherenkov angle azimuth angle.

Chromatic error error = f(n(E))

More on smearing effect

Cherenkov rings for $\theta_{dip} = 4^{\circ}$ at 10 GeV/c & 5 Tesla

- One can still do PID because Cherenkov angles are very different.
- N_{pe} for Kaons is small between 10 and 12 GeV/c.

Cherenkov rings for $\theta_{dip} = 4^{\circ}$ at 20 GeV/c with <u>B = 5 Tesla</u>

- Plot all {xfinal[i] & zfinal[i]} 2D-hits in detector plane, no cuts, no fitting.
- We determine center of the circle x₀ & z₀.

Cherenkov rings for $\theta_{dip} = 4^{\circ}$ at 30 GeV/c & 5 Tesla

• Smearing effect will limit the resolution at large magnetic field.

Can we improve our design ?

Reduce pixel size, higher PDE and better tracking

 $\sigma_{\theta} = \sigma_{\text{single photon}} / \text{VNpe} \otimes \sigma_{\text{tracking}} = \sqrt{\{\sigma_{\text{chromatic}}^2 + \sigma_{\text{pixel}}^2 + \sigma_{\text{smearing effect}}^2\}} / \text{VNpe} \otimes \sigma_{\text{tracking}}$

- 3σ limit: ~40-45 GeV/c at 2-3 Tesla, and ~30 GeV/c at 5 Tesla.
- Could be improved further with a clever algorithm for the smearing effect and by reducing the chromatic error using filters or mirror reflectivity.

Two designs

Roger Forty's design:

Schematic picture of our design:

C4F10 at 1 bar

N = 1.001415

 $N_{pe} \simeq 16$ for $\beta = 1$

 $X/X_o \simeq 4\%$

C4F10 gas at 3.5 bars
His SiPM PDE is 20% higher than ours
N = 1.0049
X/X _o ~ 10%
N _{pe} ~ 25 for β =1

R. Forty & C. Gargiulo RICH design (I used their design parameters, but did my independent calculation)

FCC week, 1 July 2021 CERN

 $\sigma_{\text{smearing}} \sim 1 \text{ mrad}, \sigma_{\text{chromatic}} \sim 0.5 \text{ mrad}, \text{ pixel size: } 0.5 \text{ mm}, \sigma_{\text{tracking}} \sim 0.3 \text{ mrad}, 20\% \text{ higher PDE}, 3.5 \text{ bars}, L = 15 \text{ cm}$

• 3 σ limit: ~75 GeV/c. Price for this performance: 3.5 bars and X/X₀ ~ 10%.

Are digital SiPMs a good choice in future ?

Peter Fisher, Heidelberg

'Digital SiPM' (or 'CMOS SPADs')

 Chip produced in a ('special') CMOS technology which allows to fabricate SPADs AND transistors on one chip

Possible Module Concept

Several bare chips grouped on large (~8×8 cm²) low activity substrate:

- Can have very small pixel sizes.
- Combine electronics and photosensor together on one chip. Fill factor: 55%.
- Can switch off the cell which is too noisy.
- Can daisy chain different segments. 10/14/22 J. Vavra, SLAC C3 workshop