

Fast Timing at Future Colliders

Ariel Schwartzman (SLAC)

Cool Coper Collider Workshop 14-Oct-2022

Introduction

- Precision timing at the level of 10-30ps is a new capability for the next generation of particle physics detectors at all future colliders
 - Address the increasing complexity of events at hadron colliders
 - 4D trackers to resolve vertices at very high pileup densities
 - o Identify long-lived particles (LLPs) and expand the reach for new phenomena
 - o Enable particle ID capabilities at low momentum
 - Enhance calorimetry measurements
 - Suppress out-of-time beam Induced backgrounds
- Coarse timing at the ns-level can complement fast timing layers for enhanced overall 4D tracking and 5D calorimetry
- R&D to investigate the full potential of fast timing detectors in future colliders is an exiting opportunity for the particle physics community

Hadron colliders

HL-LHC pileup density is comparable or larger than the track longitudinal impact parameter: **the association of tracks to vertices becomes ambiguous**!

Exploit the time spread of collisions to reduce pileup contamination

Nominal HL-LHC Luminous region σ_t = 180ps (30ps detector) \rightarrow 30/180 = 6x pile-up rejection

ATLAS and CMS

ALTAS HGTD

- LGAD sensors in the endcap/forward regions (1.3 x 1.3 mm²)
- ~30ps time resolution per track
- ATLAS improves forward VBF final states (pileup suppression, lepton isolation)
- CMS hermetic coverage improves b-tagging, LLP, and provides PID capabilities
- ATLAS and CMS HL-LHC timing layers are precursors to future 4D trackers and excellent first platforms for developing precision timing in collider environments

Physics impact: Di-Higgs

HH → bbbb (200 Pileup Distribution)

Future Hadron colliders

- ATLAS inner pixel is designed to last 2000 fb⁻¹, to be replaced mid-way through HL-LHC
 - Exciting opportunity to introduce a 4D single pixel layer for additional barrel coverage and improved physics performance

FCC-hh

- Unprecedent O(1000) pileup conditions
- Very clear case for the use of 4D technology in all tracking layers
 - Associate hits consistent in time
- Need 5-10ps resolution per track
- Dedicated R&D required to archive a radiation hardness for an intensity 30 times larger than HL-LHC

e⁺e⁻ colliders

- Clean environment
- Physics measurements require very high precision → very low passive material in tracking/vertexing detectors
- Most studies so far focus on the use of ~ns level resolution to remove particles form beam induced backgrounds
- The community is pursuing studies to assess the potential of O(10)
 picosecond timing resolution to enhance the physics capabilities of the
 next Higgs Factory
 - Large-area, large-radius 4D tracking layer(s) for PID
 - Enhancing calorimeter jet reconstruction:
 - timing can help resolve nearby hadronic showers, and effectively provide longitudinal segmentation in fiber dual-readout calorimeters
 - Various approaches: timing layers, "volume" timing, hybrid, ... with different requirements
 - Various technologies for materials, sensors, and electronics being explored to address the many challenges involved
 - Plenty of room for new ideas and innovation!

Particle ID

- Large-radius timing layers in the in front of the calorimeter can provide Timeof-Flight (ToF) for PID
- Need 10ps resolution for K/pi separation at low momentum (up to ~3 GeV)
- Complements other PID subdetectors in the low momentum region
 - for example, a RICH detector for high (10-30 GeV) momentum See talk by J. Vavra
- Large-radius timing layers can also improve LLP searches (heavy particles decaying to jets and photons)
 - More study needed

<u>Updating the SiD Detector concept</u> [Breidenbach, et. al.]

Timing layers

New perspectives on segmented crystal calorimeters for future colliders [Lucchini, et. al.]

- Hybrid segmented dual-readout calorimeter
 - Two thin timing layers in front of EM Calorimeter

Detection of high energy muons with sub-20 ps timing resolution using L(Y)SO crystals and SiPM readout [Benaglia, et. al.]

<u>Characterization of BNL and HPK AC-LGAD</u> <u>sensors with a 120 GeV proton beam [Heller, et. al.]</u>

Precision timing for collider-experiment-based calorimetry [Chekanov, et. al.]

- Performance of particle flow reconstruction depends on the ability to associate showers to particles
 - Challenging when showers overlap in space
- Precision timing information can help resolve close-by showers, exploiting the full space-time structure of showers, improving the jet energy resolution

Different approaches:

- o "Volume" (cell-level) timing
- Dedicated timing cells
- Timing layers within the calorimeter

On the Use of Neural Networks for Energy Reconstruction in High-granularity Calorimeters [Akchurin, et. al.]

CALICE SiPM-on-tile analog hadron calorimeter

<u>Time-assisted energy reconstruction in a highly-granular hadronic calorimeter Christian [Graf, Simon]</u>

On the Use of Neural Networks for Energy Reconstruction in High-granularity Calorimeters [Akchurin, et. al.]

Longitudinal segmentation by timing in dual-read out fiber calorimeters

- Timing information at the level of 30-100ps can effectively segment longitudinally fiber calorimeters, providing new capabilities for shower shape reconstruction
- Similar concept could be used to enhance RICH ring reconstruction using SiPMs with ~100ps time resolution (See Vavra talk)

Detector Technologies and R&D

Precision timing for collider-

[Chekanov, et. al.]

experiment-based calorimetry

Timing layers:

- LGADs sensors with O(10ps) and O(10um) resolution
 - AC-LGAD, TI-LGAD, DJ-LGAD, Buried LGAD, DS-LGAD (see backup)
 4-Dimensional Trackers [Berry, et. al]
 - Silicon Carbide LGADs
 - Monolithic CMOS LGADs
- o 3D silicon sensors
- LYSO crystals + SiPMs

Volume timing:

- LGADs or Silicon tiles (CMS HGCAL)
- Plastic scintillator tiles or strips + SiPMs
- o ...

Electronics

 HL-LHC timing ASICs are a revolutionary step forward to bring O(ps) timing to collider experiments, but use significant more space and power than what is required for 4D trackers → Need R&D to minimize both power consumption and channel size

ASIC	Technology	Pitch	Total size	Power consumption	TID tolerance
ALTIROC	130 nm	$1.3\mathrm{mm}$	$19.5 \times 19.5 \text{ mm}^2$	5 mW/chan	2 MGy
ETROC	$65 \mathrm{nm}$	$1.3\mathrm{mm}$	$20.8 \times 20.8 \text{ mm}^2$	3 mW/chan	1 MGy
RD53A/HL-LHC pixels	65 nm	$50\mathrm{\mu m}$	$20 \times 11.6 \text{ mm}^2$	$< 10 \ \mu W/chan$	$5-15~\mathrm{MGy}$

Some current ongoing R&D projects:

- CERN EP R&D WP5 has promoted the selection of 28nm CMOS node as the next step in microelectronics for HEP designs. Twice as fast and allows 4-5x circuits densities than 65nm. SLAC has designed a TDC in 28nm with target resolution 6.25ps. Fabrication expected January/2023
- Fermilab has developed an ASIC in 65 nm for LGAD fast timing readout based on Constant Fraction Discriminator (FCFDv0) with 10ps jitter (Current collaboration to pair with SLAC 6.25ps TDC)
- SiGe chips optimized for low power and 10ps resolution are being produced by Anadyne Inc. and UC Santa Cruz (TowerJazz 130nm)
- Full waveform digitization chip: UC. Santa Cruz is working with Nalu Scientific to design and fabricate a waveform digitization ASIC for AC-LGAD sensor arrays (TSMC 65nm)

Timing Electronics R&D at SLAC

One of the critical circuit blocks necessary to enable 4D operation in trackers are low-power and compact TDCs capable of high time-measurement precision

SLAC has designed a TDCs in 28nm technology implementing dithering with 6.25ps time resolution.

Summary

- Detectors with ultra-fast timing present a new exciting opportunity for the next generation of particle colliders
- Adding a 4th timing dimension brings new information that can enhance the capabilities of all future particle colliders
 - The case for precision timing at e⁺e⁻ Higgs factories is being investigated with various opportunities in PID, and calorimetry
- Many interesting R&D directions in sensors, electronics, and overall detector system design need to be pursued to address the multiple challenges associated to how to best utilize timing information at a future e⁺e⁻ Higgs Factory

Backup

Muon collider and EIC

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mu\mathrm{m} \times 25\mu\mathrm{m}$	$50\mu\mathrm{m} \times 1\mathrm{mm}$	$50\mu\mathrm{m} \times 10\mathrm{mm}$
Sensor Thickness	$50 \mu \mathrm{m}$	$100 \mu \mathrm{m}$	$100 \mu \mathrm{m}$
Time Resolution	30ps	60ps	60ps
Spatial Resolution	$5\mu\mathrm{m} \times 5\mu\mathrm{m}$	$7\mu\mathrm{m}\times90\mu\mathrm{m}$	$7\mu\mathrm{m} \times 90\mu\mathrm{m}$

Precision timing:

- PID using TOF and vertex identification for far-forward hadrons
- CTTL/FTTL: 4D tracking detectors with 25-30ps time resolution and 3um-50um (AC-LGADs)

May become the first demonstration of 4D tracking layers in a collider experiment

Time resolution

$$\sigma_t^2 = \sigma_{Landau}^2 + \sigma_{timewalk}^2 + \sigma_{jitter}^2 + \sigma_{TDC}^2 + \sigma_{clock}^2$$

Key to precision timing: Large signal with short rise time and low noise (reduce jitter), limited thickness (reduce Landau), and small TDC bin size (reduce TDC component)

- Time walk
 - Variable threshold (CFD)
 - Correction based on TOT

$$\sigma_{jitter} = \frac{N}{\frac{dV}{dt}} \propto \frac{t_{rise}}{S/N}$$

- TDC quantization error (bin size)
 - ATLAS/CMS 20-30ps ToA
 - ATLAS/CMS 40-100ps TOT
 - $\sigma_{TDC} = \frac{binsize}{\sqrt{12}} \sim 7ps$

Advanced LGADs

DJ-LGAD

Si Sensor technologies

- Based on physics requirements, future tracking sensors will require:
 - o simultaneous fine resolutions in both time and space of order 5-30ps and 5-25um
 - o some colliders: radiation hardness, high occupancy, low material budget
 - coarser ns-level time resolution layers can be complementary for some applications
 - o some applications will benefit from single-layer directional measurements (5D)

Two main approaches

Low Gain Avalanche Detectors (LGADs)

precision timing \rightarrow fine segmentation

Monolithic sensors / 3D

fine segmentation \rightarrow precision timing

LGADs

- Thin silicon sensors with modest intrinsic gain (5-50) provided by a dopped p+ multiplication layer
 - thin: reduces Landau fluctuations
 - high S/B from internal gain
 - o short rise time minimizes jitter
 - 30ps resolution sensors used in ATLAS and CMS HL-LHC endcap timing layer upgrades
- Standard LGADs require mm-size pads and require Junction Termination Extensions (JTE) to interrupt the gain layer between channels introducing inactive regions
- Advanced LGAD designs
 - AC-coupled, Trench-isolated, Deep-Junction, Buried Layer, double sided LGAD for 5D tracking

Advanced LGADs and 3D

Silicon Carbide LGADs

Property	Silicon	4H-SiC
Bandgap (eV)	1.12	3.27
Energy per ion pair (eV)	3.6	7.78
Dielectric constant	11.7	9.7
Breakdown field (MV cm ⁻¹)	0.3	3
Density (g cm ⁻³)	2.3	3.2
dE/dx minimum (MeV cm ⁻¹)	2.7	4.4
Atomic number Z	14	~10
Electron mobility (cm ² V ⁻¹ s ⁻¹) at 300K	1300	800-1000
Hole mobility	460	115
Saturated electron velocity (10 ⁷ cm s ⁻¹)	1	2
Threshold displacement energy (eV)	13-20	22-35
e-h pairs per micron	80	57
Thickness for equivalent signal (µm)	1	1.57
Thermal conductivity (W m ⁻¹ K ⁻¹)	130	370
Radiation length	9.4	8.7
Impact ionization coefficient	$\alpha_e > \alpha_h$	$\alpha_{\rm e} < \alpha_{\rm h}$

DS-LGAD

3D

Other technologies

Monolithic

- Many studies ongoing
- State-of-the-art results from MALTA show < 2ns time resolution: suitable for e+ecolliders
- FASTPIX dedicated sensors optimizations achieve a time resolution of 120ps

Induced current

- Same sensor as a traditional silicon detector but utilizes small pixel pitch and 3D integration (3DIC) techniques to create a low-capacitance pixel unit cell and readout chain
 - Allows the detection of the induced current at the readout electrode
 - Very fast rising edge (15ps) and angle of incidence information

Electronics

- While redout prototypes for the timing detectors at the HL-LHC upgrades have demonstrated their required performance, applying similar techniques to 4D trackers present several challenges:
 - High granularity -> ASICs with smaller pixel sizes, maintaining power consumption
 - Including the required electronics for timing extraction (TDCs and memories) in pixel pitches of O(10um) → adoption of deeper low power and fast nodes beyond 65nm
 - The entire pixel electronics will need to be designed with low power techniques and novel timing extraction architectures
 - High luminosity hadron colliders will require trackers to survive in extreme radiation environments

4D Tracking layout

- A major next step towards 4D tracking at future colliders is the study of how to best combine timing with spatial information
- Fine spatial resolution demands towards small pixels with low material budget and power may make it impractical to instrument finest timing capabilities on all layers → 4D trackers with a different balance of spatial/timing resolution may lead to an overall optimal design
 - Alternating spatial with timing layers, or 4D with 3D layers, or coarse/fine timing
 - More layers with coarser timing vs fast-timing layers
- Physics drivers: tracking/b-btagging, BIB (inner layers) vs LLP and TOF (outer layers)