Computational Frontier

SLACmass retreat, May 12th, 2022 Convener: Tina Cartaro

SLAC Contributions to Computational Frontier

Computational Frontier (CompF)	Links	SLAC Authors
Small HEP Experiments, Dance, CF computing & modeling	https://arxiv.org/abs/2203.07645 https://arxiv.org/abs/2203.07700 https://arxiv.org/abs/2203.08338	- Monzani, Fan - Monzani, Anderson, Buuck, Cartaro, Fan, Wright - Anderson, Buuck, Cartaro, Fan, Monzani, Wright
Snowmass 2021 Computational Frontier White Paper: Cosmological Simulations and Modeling	https://arxiv.org/abs/2203.07347	Birrer, Omori
Snowmass 2021 Accelerator Modeling Community White Paper	https://arxiv.org/abs/2203.08335	Edelen, Ng, Roussel
Adaptive Machine Learning for Time-Varying Systems: Towards 6D Phase Space Diagnostics of Short Intense Charged Particle Beams	https://arxiv.org/abs/2203.04391	Gessner
Solving Simulation Systematics in and with AI/ML	https://arxiv.org/abs/2203.06112	Terao
The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics	https://arxiv.org/abs/2101.08320	Collins
New directions for surrogate models and differentiable programming for High Energy Physics detector simulation	https://arxiv.org/abs/2203.08806	Kagan
Machine Learning and LHC Event Generation	https://arxiv.org/abs/2203.07460	Kagan
Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges	https://arxiv.org/abs/2203.12852	Kagan, Terao
Jas4pp a Data-Analysis Framework for Physics and Detector Studies	https://arxiv.org/abs/2011.05329	Graf

-SLAC

Computational Frontier Session

- SLACmass retreat agenda:
 - o <u>https://indico.slac.stanford.edu/event/7218/</u>
- Shared drive with slide decks:
 - <u>https://drive.google.com/drive/folders/1x_MzwX97aJ5TiVMAltoyJC_Lxr064XkY</u>

SLAC

• Computational Frontier contributions are below.

Торіс	Contribution	Speaker	Time
Machine Learning and LHC Event Generation - New directions for surrogate models and differentiable programming for High Energy Physics detector simulation	https://arxiv.org/abs/2203.08806 https://arxiv.org/abs/2203.07460	Kagan	6 (5+1)
Computational Frontier White Paper: Cosmological Simulations and Modeling	https://arxiv.org/abs/2203.07347	Birrer	6 (5+1)
Accelerator Modeling Community White Paper	https://arxiv.org/abs/2203.08335	Edelen	6 (5+1)
	https://arxiv.org/abs/2203.07645		
Small HEP Experiments, Dance, CF computing & modeling	https://arxiv.org/abs/2203.07700	Monzani	12 (10+2)
	https://arxiv.org/abs/2203.08338		

Cosmological Simulations and Modeling

S. Birrer

• Need for simulations:

- Success of the observational programs require actively pairing with a well-matched state-of-the-art simulation and modeling effort
- Simulations must deliver guaranteed high-fidelity results for individual surveys as well as for the cross-correlations across different surveys

https://arxiv.org/abs/2203.07347

• The needed advances are as follows:

- Development of scientifically rich and broadly-scoped simulations, which capture the relevant physics and correlations between probes
- Accurate translation of simulation results into realistic image or spectral data to be directly compared with observations
- Improved emulators and/or data-driven methods serving as surrogates for expensive simulations, constructed from a finite set of full-physics simulations
- Detailed and transparent verification and validation programs for both simulations and analysis tools

Simon Birrer

SL AG

Small HEP Experiments, DANCE, Dark Matter

M. E. Monzani

Small HEP Experiments, DANCE, Dark Matter

 Workshop discussing the computing needs of the "Small" HEP Experiments: <u>https://indico.physics.lbl.gov/event/1756/overview</u>

SLAC

 Workshop discussing the computational needs of the Dark Matter and Neutrino Community: <u>https://indico.cern.ch/event/82491</u>

Paper Title	Link	SLAC staff
Software and Computing for Small HEP Experiments	https://arxiv.org/abs/2203.07645	Monzani
Snowmass 2021 Cosmic Frontier: Modeling, statistics, simulations, and computing needs for direct dark matter detection	https://arxiv.org/abs/2203.07700	Monzani, Anderson, Buuck, Cartaro, Fan
Dark-matter And Neutrino Computation Explored (DANCE) Community Input to Snowmass	https://arxiv.org/abs/2203.08338	Anderson, Buuck, Cartaro, Fan, Monzani, Wright

"Small" experiments ≠ small datasets/computing problems

Example: LZ is a 10-ton Liquid Xenon TPC

- Combined engineering/science run ongoing
- LZ data is stored and processed at NERSC

Approximate data throughputs:

- Fermi-LAT (>2008): 0.3 PB/year
- LZ (2021-2026): 1-1.5 PB/year, 5 years
- ATLAS (>2010): 3.2 PB/year (raw)

Data volumes for "small" experiments are approaching the LHC scale. Resources are orders of magnitude below LHC/DUNE

SLAC

The "small experiment" community does not have a culture of large-scale software development. DOE/HEP is not keen on funding a large-scale software effort.

- 1. Use standard HEP tools as much as possible (Geant4, ROOT, Gaudi, etc.)
 - → Challenge: it is not obvious that "standard HEP tools" are going to be supported for the long run (example: DOE does not fund Geant4 anymore)
- 2. Pool resources with DM and neutrino experiments with similar needs
 - → Challenge: competition. Few experiments believe in public data/software
- 3. Use infrastructure at DOE's supercomputing centers (NERSC, ANL, etc.)
 - → Challenge: no control over architecture. Little to no resources to adapt existing software framework(s) to a constantly evolving paradigm

SLAC

NERSC: Computing Model Evolution

Experiment-independent support for "common frameworks"

- Leverage "standard" HEP tools for event simulation/reconstruction, data handling, etc.
- Crucial to (re-)build a "critical mass" of computing experts, supporting bread-and-butter HEP frameworks, to complement growing support for advanced Machine Learning
- DOE terminated its "common" support of Geant4 in 2019. Without G4 or a well-validated replacement, we will not be able to design a new HEP experiment ever again

Mitigate current challenges in training/recruiting/retention:

- Extreme challenges in recruiting, training and retention of people with dual physics and computing expertise. This seems to be getting worse, and not "just" in the Bay Area
- Create a new career trajectory for permanent software and computing experts (RSE). Provide experiment-agnostic funding to support these careers. Joint appointments?

SLAC