Prospects in CMB and Inflation

Kimmy Wu

2022-05-12 SLACmass

WPs: <u>https://arxiv.org/abs/2203.08024</u> <u>https://arxiv.org/abs/2203.05728</u> <u>https://arxiv.org/abs/2203.08128</u> <u>https://arxiv.org/abs/2203.07638</u> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Inflation: Theory and Observations

Editors: Guilherme L. Pimentel, Benjamin Wallisch and W. L. Kimmy Wu

Ana Achúcarro, 1,2 Matteo Biagetti, 3,4,5,6 Matteo Braglia, 7,8 Giovanni Cabass, 9 Emanuele Castorina, 10 Robert Caldwell,¹¹ Xingang Chen,¹² William Coulton,¹³ Raphael Flauger,¹⁴ Jacopo Fumagalli,^{7,15} Mikhail M. Ivanov,9 Hayden Lee,16 Azadeh Maleknejad,17 P. Daniel Meerburg,18 Azadeh Moradinezhad Dizgah, 19 Gonzalo A. Palma, 20 Sébastien Renaux-Petel, 21 Guilherme L. Pimentel, 1,22 Benjamin Wallisch, 9,14 Benjamin D. Wandelt, 21,13 Lukas T. Witkowski²¹ and W. L. Kimmy Wu^{23,24}

> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Snowmass2021 Cosmic Frontier: Cosmic Microwave Background Measurements White Paper

Clarence L. Chang^{1,2}, Kevin M. Huffenberger³, Bradford A. Benson^{4,1}, Federico Bianchini^{5,6}, Jens Chluba⁷, Jacques Delabrouille⁸, Raphael Flauger⁹, Shaul Hanany¹⁰, William C. Jones¹¹, Alan J. Kogut¹², Jeffrey J. McMahon^{13,14}, Joel Meyers¹⁵, Neelima Sehgal¹⁶, Sara M. Simon⁴, Caterina Umilta¹⁷, Kevork N. Abazajian¹⁸, Zeeshan Ahmed^{19,20}, Yashar Akrami^{21,22}, Adam J. Anderson^{4,23}, Behzad Ansarinejad²⁴, Jason Austermann²⁵, Carlo Baccigalupi^{26,27}, Denis Barkats²⁸ Darcy Barron²⁹, Peter S. Barry^{2,30}, Nicholas Battaglia³¹, Eric Baxter³², Dominic Beck^{33,5}, Amy N. Bender^{2,23}, Charles Bennett³⁴, Benjamin Beringue³⁰, Colin Bischoff³⁵, Lindsey Bleem², James Bock^{36,37}, Boris Bolliet³⁸, J Richard Bond³⁹, Julian Borrill^{40,41}, Theis Brinckmann^{42,43}, Michael L. Brown⁴⁴, Erminia Calabrese³⁰, John Carlstrom^{45,2}, Anthony Challinor⁴⁶, Chihway Chang^{45,23}, Yuji

Chinone^{47,48}, Susan E. Clark^{49,19}, William Coulton⁵⁰, Ari Cukierman^{33,5}, Francis-Yan Cyr-Racine⁵¹, Shannon M. Duff²⁵, Cora Dvorkin⁵², Alexander van Engelen⁵³, Josquin Errard⁵⁴ Johannes R. Eskilt⁵⁵, Thomas Essinger-Hileman¹², Giulio Fabbian^{50,56}, Chang Feng⁵⁷, Simone Ferraro⁵⁸, Jeffrey Filippini⁵⁹, Katherine Freese⁶⁰, Nicholas Galitzki⁶¹, Eric Gawiser⁶², Daniel Grin⁶³, Daniel Grin⁶³, Evan Grohs⁶⁴, Alessandro Gruppuso^{65,66}, Jon E. Gudmundsson⁶⁷, Nils W. Halverson⁶⁸, Jean-Christophe Hamilton⁶⁹, Kathleen Harrington¹³, Sophie Henrot-Versillé⁷⁰ Brandon Hensley⁷¹, J. Colin Hill^{38,72}, Adam D. Hincks⁷³, Renee Hlozek^{74,73}, William Holzapfel⁷⁵

Selim C. Hotinli⁷⁶, Howard Hui³⁶, Ayodeji Ibitoye^{77,78}, Matthew Johnson^{79,80}, Bradley R. Johnson⁸¹, Jae Hwan Kang³⁶, Kirit S. Karkare^{23,4}, Lloyd Knox⁸², John Kovac^{83,28}, Kenny Lau⁸⁴ Louis Legrand⁸⁵, Marilena Loverde⁸⁶, Philip Lubin⁸⁷, Yin-Zhe Ma⁸⁸, Tony Mroczkowski⁸⁹ Suvodip Mukherjee90, Moritz Münchmeyer91, Daisuke Nagai92, Johanna Nagy93,94, Michael Niemack³¹, Valentine Novosad², Yuuki Omori⁴⁵, Giorgio Orlando⁹⁵, Zhaodi Pan², Laurence Perotto⁹⁶, Matthew A. Petroff²⁸, Levon Pogosian¹, Clem Pryke⁸⁴, Alexandra Rahlin^{4,23}, Marco Raveri^{97,98}, Christian L. Reichardt²⁴, Mathieu Remazeilles⁹⁹, Yoel Rephaeli^{100,101}, John Ruhl¹⁰² Emmanuel Schaan⁵⁸, Sarah Shandera¹⁰³, Meir Shimon¹⁰⁰, Ahmed Soliman³⁶, Antony A. Stark²⁸ Glenn D. Starkman²¹, Radek Stompor^{104,69}, Ritoban Basu Thakur³⁶, Cynthia Trendafilova¹⁵, Matthieu Tristram⁷⁰, Pranjal Trivedi¹⁰⁵, Gregory Tucker¹⁰⁶, Eleonora Di Valentino¹⁰⁷, Joaquin Vieira^{108,109}, Abigail Vieregg⁴⁵, Gensheng Wang², Scott Watson¹¹⁰, Lukas Wenzl³¹, Edward J.

Wollack12, W.L. Kimmy Wu20, Zhilei Xu111, David Zegeye1,23, and Cheng Zhang36

Snowmass 2021 CMB-S4 White Paper

The CMB-S4 Collaboration: Kevork Abazajian,¹¹ Arwa Abdulghafour,²² Graeme E. Addison,³ Peter Adshead,⁴ Zeeshan Ahmed,⁵ Marco Ajello,⁶ Daniel Akerib,⁵ Steven W. Allen⁷⁵ David Alonso⁸ Marcelo Alvarez⁹¹⁰ Mustafa A. Amin¹¹¹ Mandana Amiri¹² Adam Anderson,^[13] Behzad Ansarinejad,^[2] Melanie Archipley,^[4] Kam S. Arnold,^[14] Matt Ashby¹³ Han Aung¹⁶ Carlo Baccigalupi¹⁷¹⁸ Carina Baker¹ Abhishek Bakshi¹³ Debbie Bard¹⁰⁰ Denis Barkats¹⁵¹⁹ Darcy Barron²⁰⁰ Peter S. Barry²¹²² James G. Bartlett²³ Paul Barton¹⁰⁰ Ritoban Basu Thakur²⁴ Nicholas Battaglia²⁵ Jim Beall²⁶⁰ Rachel Bean²⁵ Dominic Beck, Sebastian Belkner, Karim Benabed, Amy N. Bender, Bradford A. Benson, Bobby Besuner,¹⁰ Matthieu Bethermin,³¹ Sanah Bhimani,¹⁶ Federico Bianchini,²⁵ Simon Biquard 2322 Ian Birdwell, Colin A. Bischoff Lindsey Bleem 2129 Paulina Bocaz, James J. Bock 2485 Sebastian Bocquet 36 Kimberly K. Boddy 37 J. Richard Bond 38 Julian Borrill, Top François R. Bouchet, 28 Thejs Brinckmann, 3940 Michael L. Brown, 41 Sean Bryan, 42 Victor Buza, 3029 Karen Byrum, 21 Erminia Calabrese, 22 Victoria Calafut, 38 Robert Caldwell, [3] John E. Carlstrom, [3021] Julien Carron, [22] Thomas Cecil, [21] Anthony Challinor, [44] Victor Chan^[2] Clarence L. Chang^[2] Scott Chapman^[12] Eric Charles^[3] Eric Chauvin^[60] Cheng Cheng^[22] Grace Chesmore^[30] Kolen Cheung^[30] Yuji Chinone^[40] Jens Chluba^[40] Hsiao-Mei Sherry Cho^[5] Steve Cho^[25] Justin Clancy²⁵ Susan Clark²⁰ Asantha Cooray¹ Gabriele Coppi²⁰ John Corlett²⁰ Will Coulton⁵¹ Thomas M. Crawford²⁰²⁹ Abigail Crites 224 Ari Cukierman 27 Francis-Yan Cvr-Racine 20 Wei-Ming Dai 27 Cail Daley Eli Dart, Gregorg Daues, Tijmen de Haan, Cosmin Deaconu Greg Derylo, Mark Devlin, Eleonora Di Valentino, Marion Dierickx, Brad Dober, Brad Dober, Randy Doriese,²⁶ Shannon Duff,²⁶ Daniel Dutcher,⁵⁵ Cora Dvorkin,¹⁹ Rolando Dünner,⁵⁶ Tarraneh Eftekhari,⁵⁷ Joseph Eimer,³ Hamza El Bouhargani,¹⁰ Tucker Elleflot,¹⁰ Nick Emerson, 58 Josquin Errard, 23 Thomas Essinger-Hileman, 59 Giulio Fabbian, 2251 Valenting Fanfani, Alessandro Fasano, Chang Feng, Simone Ferraro, Jeffrey P. Filippini, Raphael Flauger,^[4]Brenna Flaugher,^[3]Aurelien A. Fraisse,^[55]Josef Frisch,^[3]Andrei Frolov,^[40] Nicholas Galitzki,^[4]Patricio_A. Gallardo,^[50]Silvia Galli,^[25]Ken Ganga,^[23]Martina Gerbino,^[40] Christos Giannakopoulos,³³ Murdock Gilchriese,¹⁰ Vera Gluscevic,⁶¹ Neil Goeckner-Wald David Goldfinger, Daniel Green, Paul Grimes, Daniel Grin, Evan Grohs, Riccardo Gualtieri,²¹ Vic Guarino,²¹ Jon E. Gudmundsson,⁶⁴ Ian Gullett,⁶⁵ Sam Guns,⁸ Salman Habib,²¹Gunther Haller,⁵Mark Halpern,¹²Nils W. Halverson,⁶⁶Shaul Hanany,⁶ Emma Hand,³³ Kathleen Harrington,³⁰ Masaya Hasegawa,⁵² Matthew Hasselfield,⁵¹ Masashi Hazumi,⁵² Katrin Heitmann,²¹ Shawn Henderson,⁵ Brandon Hensley,⁵⁵ Ryan Herbst,⁵ Carlos Hervias-Caimapo,⁶⁸ J. Colin Hill,⁶⁹⁵¹ Richard Hills,⁷⁰ Eric Hivon,²⁸⁷⁷ Renée Hložek Anna Ho, Gil Holder, Matt Hollister, William Holzapfel, John

~380 endorsers

Endorsers Lars Aakima, Kevork Abazajian, Tom Abel, Aliakbar Abohhasani, Peter Adahead, Pruzsina Julia Agocs, Zeeshan Ahmed, Kazuyuk Akitsu, Yashar Akrami, Soner Albayrak, Mustafa Amin, Jusi Anchordoqui, Adam Anderson, Behard Anamire, Jaid, Tasor Ayayusuk Liancon, Denis Bantasa, Mexandre Barreira, Darry Barron, Nicola Barnio, Rito han Basu Thahur, Daniel Baumann, Dominis Reck, Amy Bender, Charles Bennett, Bradford Benson, Jose Luis Bernal, Florian Bendres, Yubuhan Bhardway, Jerelorio Bainchini, Golin Bichoffi, Indiory Bhern, James Bock, Christian Boehner, Boris Bollier, J. Richard Bond, Julian Borrill, Jonathan Braden, Bafael Barso, Philippe Brat, Samuel Brieden, Théje Brindsmann, Amer Dorni, Sam Bran, Cliff Burges, Christian Byrner, Guadalape Chaih-Herrar, Granen Candlih, John Cantrom, John Joegh Carraco, Sean Carroll, Jalien Caron, Jorge L. Cervanter-Con, Sebastian Carefe, Kary Chough, Timothy Cohen, Thomas Colas, Alex Cole, Edmund Copeland, James Connelison, Natanale Craig, Paolo Crem Canggi, imouty comen, imous couss, exe coce, zianuato cogenani, santes corinento, nanuante criang, ranto teem inelli, Ari Cukieman, Francis'an Q-Pacine, Guido D'Amico, Neal Dalal, Ruth Daly, Anne-Cristine Davis, Roger de Belsunec, Jacques Delabrouille, Nicholas DePorzio, Vincent Desjacques, Eleonora Di Valentino, Konstantinos Di mopoulos, Xi Dong, Olivier Doré, Carlos Duaso Pueyo, Jo Dunkley, Ruth Durrer, Reza Ebadi, Lorenz Eberhardt, Joquin Errard, Angelo Esposito, Thomas Essinger-Hileman, Guido Fabbian, JUI Fan, Richard Feder, Chang Feng, Andrea Fer-Eratuk, mageo Espono, Inouas Esanger-ineman, Junio Parling, Jeffery Filippin, Hasan Frouzi, Jan, Mare Tere, Jang Teng, Januer et-rara, Simone Ferraro, Pedro G. Ferrari, Elias Perreira, Jeffrey Filippin, Hasan Firouzijah, Thomas Filoss, Emanuele Fondi, Simon Foreman, Sebastien Fromenteun, Nicholas Galirida, Sihvia Galil, Jose Tomas Galvez Ghersi, Mauricio Gamonal, Juan Garcia-Bellido, Martina Gerbino, Hector Gil-Marin, Nell Goeckner-Wald, Jimo-Ouk Gong, Victor Gor-benko, Peter Graham, Tanguy Grall, Daniel Green, Daniel Grin, Alesandro Gruppuso, Riccardo Gualtieri, Jon E. Gud-Denko, Freet Vaniani, Lingiy Grain, Janier Vene, Janier Van, Messandro Gruppion, Arccatoo Sunteri, Janie Sod mundsson, Federa Guidi, Eraj Guitariz, Y Guo, Changthoon Hahn, Jiashu Han, Shuu Hanee, Will Handley, Daniel Harlow, Kartin Heitmann, Sophie Henrot-Versillé, Brandon Hensley, Thomas Hertog, Mark Hertzbeg, J. Colini Hill, Kuri Hurtterbicher, Benee Hlozek, William Holzapfel, Anson Hook, Sin Hooshangi, Shaun Hotchkiss, Selim Hotinil, Bin Hu, Kevin Huffenberger, Ayodeji Ibitoye, Sadra Jazzeri, Matthew Johnson, William Jones, Austin Radek Stompor, Michael Strauss, Ganesh Subramaniam, Raman Sundrum, Aritoki Suzuki, Spyros Sy Alireza Talebian, Ting Tan, Massimo Taronna, Grant Teply, Ayngaran Thavanesan, Peter Timbie, Andrew Tolley, Cyr thia Trendafilova. Enrico Trincherini. Matthieu Tristram. Oem Trivedi. Mark Trodden. Yu-Dai Tsai, Gregory Tucke Gansukh Tumurtushaa, Gustavo Joaquin Turiaci, Cora Uhlemann, Caterina Umilta, Jean-Philippe Uzan, Jorinde vai de Vis, Jan Pieter van der Schaar, Alexander van Engelen, Thomas Van Riet, Mariana Vargas-Magaña, Vincent Venni Clara Vergès, Filippo Vernizzi, Nelson Videla, Digvijay Wadekar, Bob Wagoner, Yidun Wan, David Wands, Dong-Gang Wang, Gensheng Wang, Frank Wang, Yi Wang, Zun Wang, Scott Watson, Duncan Watts, Zachary Weiner, Denis Werth Gilles Weymann-Despres, Michael Wilson, Mark Wise, Edward Wollack, Zhong-Zhi Xianyu, Zhilei Xu, Zhao Yaqi, Cyn dia Yu, Matias Zaldarriaga, Ivonne Zavala, David Zegeye, Cristóbal Zenteno, Yunlong Zheng, Zihan Zhou, Siyi Zhou ouri Ziaeepour and Andrea Zonca

> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Snowmass 2021 CMB-S4 White Paper

od,³⁰ Selim Hotinli,³ Alec Hryciuk,³⁰ Johannes Hubmayr,²⁶ Kevin M. Huffenberger,⁶⁸ ward Hui,²⁰¹Roberto Ibáñez,²⁰¹Ayodeji Ibitoye³⁰⁷Margaret Ikape³⁰⁵Kent Irwin³⁷Cooper obus³⁸Oliver Jeong³⁹Bradley R. Johnson²⁰¹Doug Johnstone³²⁵⁰William C. Jones³⁵⁵ In Joseph^{IIII} Baptiste Jost²⁰¹⁰ Jae Hwan Kang^{2II} Ari Kaplan^{IIII} Kirit S. Karkare³⁰¹³ buhiko Katayama²⁰¹³ Reijo Keskitalo¹⁰⁰⁹ Cesiley King²⁰¹ Theodore Kisner¹⁰¹⁹ Matthias in, Lloyd Knox, Brian J. Koopman, Arthur Kosowsky, John Kovac, المجتلفة Ely Kovetz, Alex Krolewski, Donna Kubik, Steve Kuhlmann, Chao-Lin Kuo ito Kusaka¹⁰¹⁸⁹ Anne Lähteenmäki⁸³³ Kenny Lau⁸²⁷ Charles R. Lawrence¹³⁵ Adrian Lee⁹¹⁰ Louis Legrand²²⁷ Matthaeus Leitner¹⁰⁰ Clément Leloup²³¹²³ Antony Lewis⁸⁴ le Li,⁵ Eric Linder,¹⁰⁹ Ioannis Liodakis,⁸⁵ Jia Liu,⁷⁸ Kevin Long,¹⁰ Thibaut Louis,⁸⁶ ırilena Loverde, Lindsay Lowry, Chunyu Lu, Phil Lubin, Yin-Zhe Ma, Thomas ccarone, Mathew S. Madhavacheril, Felipe Maldonado, Adam Mantz, Gabriela rques, Frederick Matsuda, Philip Mauskopf, Jared May, Heather McCarrick, McCarrick, McCarrick, Jarden, McCracken, J. Jeffrey McMahon, 2013 P. Daniel Meerburg, Jan-Baptiste Melin, Science, Scie ipe Menanteau,^{II} Joel Meyers,^{III} Marius Millea,^{III} Vivian Miranda,^{IIII} Don Mitchell,^{III} n Mohr,³⁶ Lorenzo Moncelsi,²⁴ Maria Elena Monzani,³⁷ Magdy Moshed,²³³² y Mroczkowski Suvodip Mukherjee Moritz Münchmeyer Daisuke Nagai andan Nagarajappa Johanna Nagy Toshiya Namikawa Federico Nati Tyler toli 102 Simran Nerval⁴⁵ Laura Newburgh¹⁶⁰ Hogan Nguyen¹³³ Erik Nichols¹⁰⁰⁹ And-a Nicola⁵⁵ Michael D. Niemack²⁵ Brian Nord¹³³ Tim Norton¹⁵³ Valentine Novosad²⁰ ger O'Brient ten,²⁰¹ Stephen Padin,²⁴¹ Scott Paine¹⁵³ Bruce Partridge⁵² Sanjaykumar Patil⁵⁰¹ Don ravick³¹ Matthew Petroff³⁰² Elena Pierpaoli⁵⁰¹ Mauricio Pilleux¹⁰⁰³ Levon Pogosian⁵⁰⁰ rthik Prabhu,[™]Clement Pryke,[™]Giuseppe Puglisi,^{™™}Benjamin Racine,^{™™}Srinivasan ghunathan,¹⁸ Alexandra Rahlin,¹³³⁰⁹ Marco Raveri,⁵³ Ben Reese,⁵ Christian L. Reichardt,² ithieu Remazeilles,¹⁰⁰⁹ Arianna Rizzieri,²³³²⁹ Graca Rocha,¹³⁵²⁴ Natalie A. Roe,¹⁰⁰ Kaja ermund, Anirban Roy, John E. Ruhl, Joe Saba, Noah Sailer, Maria Salatino, njamin Saliwanchik ¹⁰⁰ Leonid Sapozhnikov⁵ Mayuri Sathyanarayana Rao¹⁰⁰ Lau Saunders¹⁰⁰ Emmanuel Schaan¹⁰⁰ Alessandro Schillaci.²²¹ Benjamin Schmitt.¹⁰⁰ Dous Scott, 12 Neelima Sehgal, 14 Sarah Shandera, 106 Blake D. Sherwin, 44 Erik Shirokoff rwin Shiu,55 Sara M. Simon,13 Baibhav Singari,67 Anže Slosar,104 David Spergel,55 er St. Germaine,^[10]Suzanne T. Staggs⁵⁵ Antony A. Stark¹¹³ Glenn D. Starkman¹⁴³ Bryan inbach,^[21] Radek Stompor,¹²² Chris Stoughton,¹³ Aritoki Suzuki,¹⁴⁰ Osamu Tajima,¹⁴⁰ ris Tandoi,[#] Grant P. Feply¹⁴ Gregg Thayer⁵² Keith Thompson,⁷ Ben Thorne⁵⁰ Pe-Timbie⁵² Maurizio Tomasi,¹⁰⁵⁴⁰ Cynthia Trendafilova,⁵³ Matthieu Tristram,⁵⁶ Carole cker,^{22]} Gregory Tucker,¹⁰⁹ Caterina Umiltà,⁸ Alexander van Engelen,⁸² Joshiwa van rerwijk ^[20] Eve M. Vavajakis ^[20]Clara Verges ^[20] Joaquin D. Viera,^[4] Abigal G. Vierege ^[30] sey Wagoner ^[50] Benjamin Wallisch ^[40] Gensheng Wang ^[21] Guo-Jian Wang ^[22] Scott tson ^[10] Duncan Watts ^[12] Chris Weaver ^[13] Lukas Wenzl ^[25] Ben Westbrook ^[4] Martin uite [19] Nahan Whitehom, [11] Andrew Wiedlea [10] Paul Williams [10] Robert Wilson, [11] III rison Winch, [5] Edward J. Wollack, [9] W. L. Kimmy Wu [5] Zhilei Xu [11] Volodymyr

G. Yefremenko,²¹Cyndia Yu,⁷⁵David Zegeye,³⁰Jeff Zivick,³⁰Andrea Zonca¹⁴

Snowmass2021 CMB-HD White Paper

The CMB-HD Collaboration1, Simone Aiola2, Yashar Akrami3,4,5,6, Kaustuv Basu7, Michael Boylan-Kolchin⁵, Thejs Brinckmann^{9,10}, Sean Bryan¹¹, Caitlin M Casey⁸, Jens Chluba¹², Sebastier Clesse¹³, Francis-Yan Cyr-Racine¹⁴, Luca Di Mascolo^{15,16,17}, Simon Dicker¹⁸, Thomas

Essinger-Hileman¹⁹, Gerrit S. Faren^{20,21}, Michael A. Fedderke²², Simon Ferraro^{23,24}, George M. Fuller²⁵, Nicholas Galitzki²⁶, Vera Gluscevic²⁷, Daniel Grin²¹, Dongwon Han²⁰, Matthew Hasselfield² Renée Hložek^{28,29}, Gil Holder³⁰, Selim C. Hotinli²², Bhuvnesh Jain¹⁸, Bradley Johnson³¹, Matthew Johnson^{32,33}, Pamela Klaassen³⁴, Amanda MacInnis³⁵, Mathew Madhavacheril^{33,27}, Savan Mandal³ Philip Mauskopf^{36,37}, Daan Meerburg³⁸, Joel Meyers³⁹, Vivian Miranda³⁵, Tony Mroczkowski⁴⁰, Suvodi Mukherjee^{33,41,42,43}, Moritz Münchmeyer⁴⁴, Julian Munoz⁴⁵, Sigurd Naess², Daisuke Nagai⁴⁶, Toshiya Namikawa⁴⁷, Laura Newburgh⁴⁶, Hô Nam Nguyễn⁴⁸, Michael Niemack⁴⁹, Benjamin D. Oppenheimer^{50,47} Elena Pieroaoli²⁷, Srinivasan Raehunathan⁵¹, Emmanuel Schaan^{23,24}, Neelima Seheal³⁵, Blake Sherwin²⁷ Sara M. Simon⁵², Anže Slosar⁵³, Kendrick Smith³³, David Spergel², Eric R. Switzer¹⁹, Pranjal Trivedi⁵⁴ Yu-Dai Tsai⁵⁵, Alexander van Engelen¹¹, Benjamin D. Wandel^{2-56,57}, Edward J. Wollack¹⁹, and Kimmy Wu^{58,55}

CMB: sensitive to physics of the early and late universe

NASA/WMAP Science Team

CMB polarization is the Frontier

Kimmy Wu, SLAC

What can we reach with CMB-S4?

	Stage 2	Stage 3	Stage 4	Science Goal
Inflation: σ_r	0.1 inflationary thresh	0.003 old	0.0005	Detect or rule out the simplest and most compelling classes of inflationary models.
Light Relativistic Species: ΔN_{eff} (95% upper limit) Neutrino Masses: $\sigma_{\Sigma Mv}$	0.28 ΔN_{eff} for T = 300 M 0.2eV	0.1 leV	0.06	Detect or rule out all light relativistic particles that decoupled after the start of the QCD phase transition.
	lower limit Σm _v	0.04eV	0.024eV	Detect or place a stringent limit on the neutrino mass sum.

PGW significance

- Inflation sources quantum fluctuations, esp. scalar & tensor metric fluctuations.
 - → Tensor fluctuations are primordial gravitational waves.
- Observation of a non-zero tensor amplitude (tensor-to-scalar ratio *r*).
 → Glimpse of quantum gravity at work.
- In simple models:
 - → Related to energy scale of inflation,
 - → Constrains distance traversed by the inflaton.

PGW targets

- $r \ge 0.01$:
 - → Super-Planckian inflaton field excursion,
 - → Evidence for approximate shift symmetry in quantum gravity.
- $r \ge 0.001$:

→ Evidence for the simplest models of inflation which naturally predict observed n_s and have a characteristic scale > M_p . (cf. Starobinsky's R² inflation, Higgs inflation, α-attractors, ...).

• Non-detection:

- → Vast restriction of inflationary model space,
- → Still insights into physics at very high scales.

CMB-S4 will detect or rule out targets

Challenges to reaching PGW goal

- Galactic foregrounds
 - Polarized dust and synchrotron fields are non-Gaussian (Galactic magnetic field, filamentary structure of HI emission which dust field traces, etc.)
 - Need better simulations (MHD, modeling based on auxiliary data from non-mm bands) and analyses immune to / robust against foreground mismodeling.
- Delensing
 - For CMB-S4, need to remove > 90% of the lensing B mode power to reach *r* science goal.
 - Need small-scale Galactic foreground simulations to assess potential biases to the lensing B estimate if mismodeled.

How is CMB-S4 designed so that PGW goals can be achieved

- Focus detectors on small patch of sky (~3%) —> ultra-deep observations across multiple bands.
 - Simpler foregrounds than largepatch observations
- Pairing small-aperture telescopes (SATs) with large-aperture telescope (LATs) observations.
 - SATs such as BICEP/Keck telescopes demonstrated recovery of degree-scale modes with control of instrumental systematics.
 - LATs are use for delensing: high S/N estimation of lensing B mode contribution requires more modes than is available to SATs.

95GHz SAT relative hits on the ultra-deep patch

Summary

- CMB observations are foundational to model cosmology and essential to pushing frontier of understanding the early universe.
- Observations of PGWs have profound implications for HEP.
- CMB-S4 is designed to reach theoretically relevant thresholds of *r*.
- Lots of opportunities for further understanding the early universe through joint analyses with other surveys (optical, 21cm, line-intensity mapping) to constrain primordial non-Gaussianity and features.

Extras

Other ways to probe inflation: Primordial non-Gaussianity, features in primordial spectrum

- Departures from the minimal power-low (near scale-invariant) primordial power spectrum are common when connecting inflationary models with particle physics —> features in primordial spectrum.
- Extra degrees of freedom that interacts with the inflaton d or curvature perturbation self-interaction are examples that generate PNGs.
- So far, observations provide no evidence for departures of Gaussianity of primordial fluctuations.
- For these two signatures, current CMB observations provide the most stringent constraints. With upcoming LSS surveys, CMB+LSS will provide the most powerful limits.

