BSM in neutrino experiments (cosmogenic and accelerator)

Gianluca Petrillo Yun-Tse Tsai

SLAC National Accelerator Laboratory, U.S.A.

SLACmass white papers, May 12, 2022

Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments

NF03 Contributed White Paper to Snowmass 2021

J. BERGER⁷, D. BRAILSFORD⁸, K. CHOI¹, J. I. CRESPO-ANADÓN⁵, Y. CUI³, A. DAS¹², J.A. DROR⁴, ALEC HABIG¹⁰, Y. ITOW¹¹, E. KEARNS², D. KIM^{*13}, J.-C. PARK⁶, G. PETRILLO¹², C. ROTT^{15,17},

M. Sen⁹, V. Takhistov¹⁴, Y.-T. Tsai^{†12}, and J. Yu¹⁶

from SLAC: Yun-Tse Tsai (lead editor), Anirban Das, Gianluca Petrillo

DARK SECTOR STUDIES WITH NEUTRINO BEAMS NF03 Contributed White Paper to Snowmass 2021

BRIAN BATELL^{*1}, JOSHUA BERGER², VEDRAN BRDAR^{3,4}, ALAN D. BROSS³, JANET M. CONRAD⁵,
PATRICK DENIVERVILLE⁶, VALENTINA DE ROMERI⁷, BHASKAR DUTTA⁸, SAEID FOROUGHI-ABARI⁹,
MATHEUS HOSTERT^{10,11,12}, JOSHUA ISAACSON³, AHMED ISMAIL¹³, SUDIP JANA¹⁴, WOOYOUNG JANG¹⁵,
KEVIN J. KELLY¹⁶, DOOJIN KIM⁸, MATHIEU LAMOUREUX¹⁷, JONG-CHUL PARK¹⁸, GIANLUCA
PETRILLO¹⁹, ADAM RITZ⁹, SEODONG SHIN²⁰, TYLER B. SMITH²¹, YU-DAI TSAI²¹, YUN-TSE TSAI¹⁹,
RICHARD VAN DE WATER⁶, JASON WYENBERG²², AND JAEHOON YU^{* 15}

from SLAC: Yun-Tse Tsai, Gianluca Petrillo

G. Petrillo (SLAC)

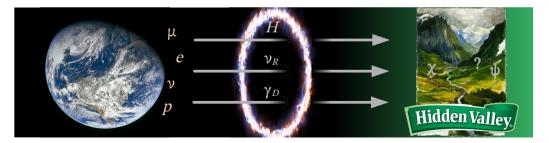
BSM in neutrino experiments

Dark Matter, Dark Sector, Dark Light...

- dark matter is here!
- probed by dedicated experiments with small size, zero-noise detectors
- the two papers are all about how do go further:
 - **(**) focus the detection where there might be a large flux
 - e have large sensitive volumes

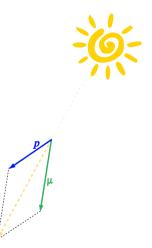
Look at the sky!

Look where dark matter is already: accumulated in massive objects (Galactic Centre, Sun...). What we may see:



- (excess of) neutrinos from dark matter decay
- "Boosted" Dark Matter: from very weak interaction with SM, and requires hierarchy (10 pages about that...)

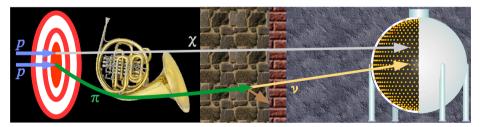
Behind you!


We can be producing Dark matter in the same facilities where we produce neutrinos (neutrino beam targets, atmosphere)

- "portal" concept
- an arbitrary Dark Matter world
- interacts with Standard Model via a single weak mediator
- may be Higgs-related, (dark) photon, (right-handed) neutrino (30 pages)

Major experimental features: cosmogenic sources

- 100% duty cycle: we don't know when DM interaction could happen
- point to source: reconstruction of incoming particle direction
 - low threshold: don't miss anything
 - can manage high multiplicity for large DM mass
- scintillator: fast, good energy resolution
- water: large, threshold hides heavies (protons)
- LArTPC: detailed view of high multiplicity interactions, secondary interaction vertex resolution
- environment air, water, ice: the largest, but sparse

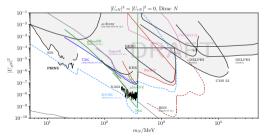


Reconstruction of incoming particle direction.

Major experimental features: neutrino beams

Fora a competitive search for Dark Matter in neutrino beams:

- high beam intensity is essential
- neutrinos are background: special runs with no neutrino "focussing" are better
- moving off-beam also reduces neutrino "contamination"
- pulsed beams help rejecting neutrino background


Neutrino background can be reduced by not focussing (or diverting) pions.

G. Petrillo (SLAC)

BSM in neutrino experiments

- we are interested in the use of neutrino detectors for dark matter
- Dark Matter detection signatures are often similar to neutrinos'
- there are cases where they are competitive because of size, thresholds or resolution
- the game is getting tough, with stringent limits (to which these detectors already contribute)

Constraints on mixing of heavy neutrino with mass m_N and μ .