Neutrino-nucleus cross sections and electron scattering experiments SLACmass meeting

Alex Friedland, theory group

May 12, 2022

All-star team

Artur Ankowski

Shirley Li

Snowmass white paper contributions

- Event Generators for High-Energy Physics Experiments, 2203.11110
- Electron Scattering and Neutrino Physics, 2203.06853
- The Forward Physics Facility at the High-Luminosity LHC, 2203.05090
- Low-Energy Physics in Neutrino LArTPCs, 2203.00740
- Theoretical Tools for Neutrino Scattering, 2203.09030

Energy reconstruction is crucial NOvA 2019

Figure from NOvA, arXiv:1906.04907

• $\theta_{23} = \pi/4$ implies a steeply rising spectrum

cf. NOVA 2016

 Events in the oscillation dip were interpreted as evidence of nonmaximal mixing

Best Fit (in NH): $\left|\Delta m_{32}^2\right| = 2.67 \pm 0.12 \times 10^{-3} \text{eV}^2$ $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

Maximal mixing excluded at 2.5σ

Measuring neutrino energy at DUNE/NOvA

- In 1-4 GeV beams, a variety of final states are produced:
 - protons,
 - pions,
 - gammas,
 - neutrons
- Lepton kinematics alone is insufficient to infer E_{ν}
- Have to use calorimetric reconstruction: measure the energy of all final-state particles

A.F., S. Li, Phys.Rev.D **99**, 036009 (2019) Phys.Rev.D **102**, 096005 (2020)

Calorimetry challenge

- Directly connecting ionization charge to neutrino energy is a non-trivial task!
 - Iow-energy p/pi-discrimination
 - neutron losses
 - Opportunity to connect to ML reconstruction at SLAC
- Generators are needed to fill in missing information
 - Predicting the composition and properties of the hadronic final state

A.F., S. Li, Phys.Rev.D **99**, 036009 (2019) Phys.Rev.D **102**, 096005 (2020)

Also to correct for different event containment

A.F., S.Li, DOI: 10.1103/PhysRevD.102.096005

Connecting near and far detectors requires robust interaction

Which aspects of the generators should be improved as the highest priority?

- In theory, any improvement to the models in the generators is a positive development
- in practice, fixating on one process while neglecting greater sources of discrepancies may lead to
 - misallocation of resources,
 - Iull the community into complacency,
 - leading to uncontrolled systematic errors

Neutrino scattering at several GeV

- Need to evaluate the different physics ingredients:
 - QE, resonant and nonresonant pion production, DIS-like, multi-nucleon
- neutrino beams are not monochromatic and energy reconstruction requires good generators, see above!
- Find an independent way to systematically test all these processes

arXiv: 2006.11944

GENIE vs JLAB

2.2 GeV electron beam JLAB

Predictions beyond the quasielastic peak are in dramatic disagreement with the data

Different kinematic regimes

 Chronic problems with many other datasets.

Decisive test: comparison to hydrogen and deuterium

- Surprising findings:
 - Large discrepancies originate in (mis)modeling of hadronic processes
 - Prominent double-counting in the RES -> DIS region

For details, see A. Ankowski, A.F., DOI: 10.1103/PhysRevD.102.053001

Large discrepancies persist for other generators

Ankowski, A.F., Li, to appear

Large discrepancies persist for other generators

Ankowski, A.F., Li, to appear

Common physics challenges of modern neutrino event generators

- We find that kinematic regimes in which the scattering is modeled as an overlap of different physical processes are especially prone to mis-modeling
- Transition between higher resonances and the DIS regime, encompasses *nearly half* of all expected events for DUNE
- Requires an improved theoretical framework validated against extensive inclusive and exclusive data

New data!

- To make progress on the foundational challenges, we need to collect new data, both neutrino and electron
- Both the final-state electron and the hadronic system should be measured
 - Composition and energy distribution between protons, pions, gammas, neutrons
 - Large solid angle coverage in the forward cone

Exciting opportunity to study e-A physics at SLAC

- LDMX (Light Dark Matter eXperiment) was conceived to search for light dark matter
- Electron beam energy in the S30XL beam line is 4 GeV (8 GeV), great to make measurements for DUNE
- LDMX happens to have advantageous characteristics: wide angular acceptance of charged hadrons, good momentum resolution, ability to detect neutrons
- Opportunity to gather both inclusive data and detailed information about the final-state hadronic system

Important: large discrepancies among generator predictions for exclusive channels

Simulation for the LDMX detector

Ankowski, et al, 1912.06140 [hep-ph] DOI: <u>10.1103/PhysRevD.101.053004</u>