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XCC – XFEL Compton Collider 

Run  at 125 GeV 30% of the time

and  at 140 GeV 70% of the time

to calibrate the BR measurements at 125 GeV.  

This produces model independent Higgs coupling 
measurements, just l
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The XCC is presented as a possible lower cost 
alternative to the ILC and C3 250 GeV e+e- Higgs 
factories.  It is being pursued because every e+e-

linear collider proposal to date has been rejected due 
to its high cost. That said, it should be noted that 
strong synergies between XCC and the SLAC XFEL 
program also serve to motivate this concept.
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Potential Cost Savings with the XCC

C3 250 GeV  Capital Cost Estimate XCC 140 GeV  Capital Cost Estimate

With these estimates the XCC would be 60% of the cost of C3 250 GeV. Given the very early 
stage of the XCC design and the many XFEL technical challenges, it is important that these 
tables are viewed as illustrative, providing insight into the potential cost savings of the XCC.
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Higgs Rate and Background for XCC vs Optical γγ Collider (OCC) &  ILC 
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Alternative Polarization for Scanning Higgs Resonance  
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Narrower leading edge width (45 MeV) at cost of lower Higgs rate.  Width dominated by 0.05%  energy     
A Higgs resonance scan can mea
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A total Higgs width  4 MeV is not ruled out by LHC data, but would require, for example, a conspiracy of  a universal
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Another possible application of the alternative polarization is improved signal-to-background.   Detailed studies are 
required to determine if this improvement can

surements would have to be addressed)

 compensate for the loss in signal statistics.   
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Measurement of Γγ using e- γ e-H at Ecm=140 GeV  
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The signal is a monochromatic 14.2 GeV electron, predominantly in the forward direction.  In order to
achieve model independent ILC-like precision for  Higgs couplings and the total Higgs width, about
1  event must be detected at 140 GeV per 125  events collected at 125 GeV.
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If, as is likely, a direct 5 MeV measurement of the Higgs width corresponds to a large fractional error, then individual
Higgs partial widths and the total Higgs width will have to be extracted at XCC by measuring  through  at

140 GeV. This is the XCC analog of the  Higgs factory measurement of  through Higgs recoil in . 
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XCC Coupling Errors Using  EFT Higgs Program
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The e- γ Luminosity Problem 
With the current  collider design, the Higgs rate in  collisions at 140 GeV is 0.8% of the rate in 

collisions at 125 GeV.  This is an unsatisfactory situation as 2/3 of the running time is
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 events to dribble in at 140 GeV. Another related issue is the factor of 3.8 increase in the
number of bunches per train required to achieve ILC-like Higgs precision over 12 
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The e- γ Luminosity Problem 
Solution for now is to go to asymmetric emittances
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Energy upgrade to Ecm=280 GeV for Higgs Self Coupling Study 

2012 Study

Optimum sensitivity at 280 GeV

Used optical laser for Compton scattering

sγγ =

( ) @ 280 GeV      ( ) @ 500 GeV  
Need to redo the KEK  study with the XCC  spectrum.

HH s e e ZHH s
HH

σ γγ σ
γγ γγ

+ −→ = ≈ → =
→

2.8 km footprint
assuming gradient  70 MeV/m  120 MeV/m
(C3 uses assumes this gradient upgrade to get 
from Ecm=250  500 GeV)
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Photon Science at XCC  - HEDS Fusion Example 
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“Applicability of semiclassical methods for modeling
laser-enhanced fusion rates in a realistic setting”

Phys. Rev. C 105, 054001 – 10 May 2022
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XCC Physics Summary

• The XCC at Ecm=125-140 GeV can measure absolute Higgs couplings in a model 
independent manner with an accuracy of order 1% .   This is pretty close to the ILC 
precision.  To fully match or exceed the ILC Higgs coupling accuracy, a way must be found 
to increase the top 1% e-γ luminosity at Ecm=140 GeV.

• The Higgs self coupling can be studied via γγHH if the XCC energy is upgraded to 
Ecm=280 GeV.   Given that σ(γγHH) ~ σ(e+e- ZHH), the Higgs self coupling sensitivity 
for XCC will probably be comparable to ILC at Ecm=550 GeV

• There are strong synergies between XCC and the XFEL program at SLAC.  Solutions
to high energy/pulse XFEL production and focusing issues at XCC will lead to new 
opportunities in XFEL photon science.
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