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XCC - XFEL Compton Collider

arXiv:2203.08484

31 GeV e .. g 31GeV e

63-70 GeV e

63-70 GeV e

C3 Linac C3 Linac

cryo RF gun cryo RF gun
* ~ 2.5 Km >
Run yy — H at /s, =125 GeV 30% of the time o, = 20 Hm O'},Z =20 Hm
ande’y —> e H at Js,, =140 GeV 70% of the time Ne_ =1 nC }’gx,y =120 nm
to calibrate the o x BR measurements at /s, =125 GeV. dcp =60 pum Pe - =90%
This produces model independent Higgs coupling 5
measurements, just like the ILC. a;/FWHM =70 nm ‘fnon—linear QED — 0.10
vy mode /5 = 125 GeV The XCC is presented as a possible lower cost

alternative to the ILC and C3 250 GeV e*e Higgs
factories. It is being pursued because every e*e
linear collider proposal to date has been rejected due

Luminosity (103 cm=2 s71)
Process Total ‘ V5> 100 GeV

2.1 0.12
ejZ— 0.23 0.18 to its high cost. That said, it should be noted that
ey+ye” | 25 0.42 strong synergies between XCC and the SLAC XFEL
erememer | 048 0.05 program also serve to motivate this concept.
ety + e 0.47 0.01




Potential Cost Savings with the XCC

C3 250 GeV Capital Cost Estimate XCC 140 GeV Capital Cost Estimate
CCC GeV 250 XCC GeV 140
MeV/m 70 MeV/m 70
Sub-Domain MS % % Sub-Domain M$ %

Beam Delivery and
P Beam Delivery and FF 295 8 13 P FF 148 7| 15
IR 184 5 IR 184 8
Civil Eng 204 5 Civil Eng. 114 5
Support Inf. | Common Facilities 396 11| 19 Support Inf. Common Facilities 396 qatls R
Cryo-plant 101 3 Cryo-plant 133 6
Total 3733 100 Total 2260 100

With these estimates the XCC would be 60% of the cost of C3250 GeV. Given the very early
stage of the XCC design and the many XFEL technical challenges, it is important that these
tables are viewed as illustrative, providing insight into the potential cost savings of the XCC.



Higgs Rate and Background for XCC vs Optical yy Collider (OCC) & ILC
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Alternative Polarization for Scanning Higgs Resonance
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Narrower leading edge width (45 MeV) at cost of lower Higgs rate. Width dominated by 0.05% e~ energy spread.
A Higgs resonance scan can measure the total width to 4.5 MeV, i.e., a 112% measurement if the width has the SM value.
A total Higgs width > 4 MeV is not ruled out by LHC data, but would require, for example, a conspiracy of a universal
kappa scale factor x, >1 combined with B,,, ~1—x,> assuming LHC kappa ratios —> 1 with ever greater precision:
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(also LHC off-shell H* - ZZ measurements would have to be addressed)
Another possible application of the alternative polarization is improved signal-to-background. Detailed studies are

required to determine if this improvement can compensate for the loss in signal statistics. 5



Measurement of I', using e"y 2 e'H at E ;=140 GeV

If, as is likely, a direct 5 MeV measurement of the Higgs width corresponds to a large fractional error, then individual
Higgs partial widths and the total Higgs width will have to be extracted at XCC by measuring I, through e’y — e H at

Js =140 GeV. This is the XCC analog of the e"e” Higgs factory measurement of I', through Higgs recoil in e'e” — ZH.
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The signal is a meoyriocf:romatic 14.2 GeV electron, predominantly in the forward direction. In order to
achieve model independent ILC-like precision for Higgs couplings and the total Higgs width, about

1 ey »> e H event must be detected at 140 GeV per 125 yy — H events collected at 125 GeV.
o(ey >e H)=4.11b at 140 GeV assuming forward detector coverage down to ¢ >3 mrad (there

is no Compton scatter background on this side of the IP in e”y collisions).
With the current e y collider design, the yearly luminosity with J$§ within 1% of the 140 GeV peak is 32 fb™’

= for every year collecting Higgs events at Js =125 GeV, two years must be spent producing
ey > e H at 140 GeV.



XCC Coupling Errors Using EFT Higgs Program

ILC XCC
couplinga Aa (%) Aa (%)
HZ7Z 0.57 1.2
HwWw 0.55 1.2
Hbb 1.0 1.4
Hrzr 1.2 1.4
Hgg 1.6 1.7
Hcce 1.8 1.8
Hyy 1.1 0.77
HyZ 9.1 10.0
H uu 4.0 3.8
I' ot 2.4 3.8
| 0.36 -
Cother 1.6 2.7

"95% C.L. limit

0.5x10° e'e” — ZH events

full 2 ab™' /s =250 GeV

10 year program

ILC:

XCC: 0.5x10° yy — H events
4000 e ¥y > e H events

4 years yy — H @ /s =125 GeV

years e ¥y >e H @ Js =140 GeV
assuming Nyynch = 76 — 290

-80% e, +30% e* polarization:
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Zh wvvh Zh vvh Zh vvh

a 2.0 1.8 4.2
h — invis. 0.86 1.4 3.4
Use ILC cXBR measurement errors h— bb 13 81 15 18 25 003
. h — cc 8.3 11 19 18 8.8
for XCC: h—s g9 7.0 84 7.7 15 5.8
h— WW 4.6 5.6 5.7 7.7 34
h— 71 3.2 4.0 16 6.1 9.8
h—= 727 18 25 20 35 12¢
h— vy 34+ 30 45° 47 27
h— pp 72 87 160" 120 100
a 7.6 2.7 4.0
b 2.7 0.69" 0.70

pla,b) -99.17 -95.6% 84.8



The e"y Luminosity Problem

With the current e y collider design, the Higgs rate in e y collisions at Js =140 GeV is 0.8% of the rate in vy
collisions at v/s =125 GeV. This is an unsatisfactory situation as 2/3 of the running time is spent waiting for
e ¥ > e H events to dribble in at Js =140 GeV. Another related issue is the factor of 3.8 increase in the
number of bunches per train required to achieve ILC-like Higgs precision over 12 years. Only a factor of

2 increase in the number of bunches per train at XCC is required to match the ILC's count of 0.5 x10° Higgs bosons
over a decade (note that ILC also assumes a 2x luminosity upgrade).

The e e geometric luminosity for e collisions is 11x10* cm™ s and yet the ey luminosity within 1% of the
140 GeV peak is only 0.09x10* cm™ s™' for symmetric x and y emttiances.

Large coherent e"e” pair production leads to pinching of the opposite e~ beam which further increases the E,_, leading
to more positron production and pinching in a feedback manner (new effect discovered in XCC study).
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The ey Luminosity Problem

Solution for now is to go to asymmetric emittances
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Ultimately we would like to suppress the E__,
* Introduce a plasma to neutralize the IP (suggestion by F. Zimmerman to reduce the anti-pinch in e’e” collisions)
» Studies using CAIN indicate that the introduction of an additional 10 GeV e~ beam with suitable timing

and location could deflect the Compton-scattered beam just enough to significantly suppress
beamstrahlung and coherent e*e” pair-production.



Energy upgrade to Ecm=280 GeV for Higgs Self Coupling Study
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Photon Science at XCC - HEDS Fusion Example
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Phys. Rev. C 105, 054001 — 10 May 2022
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XCC Physics Summary

« The XCC at E_,=125-140 GeV can measure absolute Higgs couplings in a model
independent manner with an accuracy of order 1% . This is pretty close to the ILC
precision. To fully match or exceed the ILC Higgs coupling accuracy, a way must be found
to increase the top 1% e-y luminosity at E_ =140 GeV.

« The Higgs self coupling can be studied via yy=>HH if the XCC energy is upgraded to
E.,=280 GeV. Given that o(yy>HH) ~ o(e*e- >ZHH), the Higgs self coupling sensitivity
for XCC will probably be comparable to ILC at E_, =550 GeV

« There are strong synergies between XCC and the XFEL program at SLAC. Solutions
to high energy/pulse XFEL production and focusing issues at XCC will lead to new
opportunities in XFEL photon science.
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