XCC Physics Case

Tim Barklow SLACmass Summary Retreat May 12, 2022

XCC – XFEL Compton Collider

$\gamma\gamma \mod \sqrt{s} = 125 \text{ GeV}$					
	Luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$				
Process	Total $\sqrt{\hat{s}} > 100 \text{ GeV}$				
$\gamma\gamma$	2.1	0.12			
e^-e^-	0.23	0.18			
$e^-\gamma + \gamma e^-$	2.5	0.42			
$e^+e^- + e^-e^+$	0.48	0.05			
$e^+\gamma + \gamma e^+$	0.47	0.01			

The XCC is presented as a possible lower cost **alternative** to the ILC and C³ 250 GeV e⁺e⁻ Higgs factories. It is being pursued because every e⁺e⁻ linear collider proposal to date has been rejected due to its high cost. That said, it should be noted that strong synergies between XCC and the SLAC XFEL program also serve to motivate this concept.

Potential Cost Savings with the XCC

C³ 250 GeV Capital Cost Estimate

XCC 140 GeV Capital Cost Estimate

CCC		GeV	250		
		MeV/m	70		
	Sub-	Domain	М\$	%	%
	Injectors		301	8	
Sources	Damping Rings		461	12	35
	Beam Transport		563	15	
Main Linas	Cryomodule		357	10	22
	C-band Klystron		871	23	55
ю	Beam Delivery and FF		295	8	12
IP	IR		184	5	15
	Civil Eng		204	5	
Support Inf.	Common Facilities		396	11	19
	Cryo-plant		101	3	
	Total		3733	100	

ХСС		GeV	140			
		MeV/m	70			
	Sub-Domain		M\$	%		
	Injectors		200	9		
Sources	FEL		200	9	26	
	Beam Transport		197	9		
Main Lines	Cryomodule		200	9	20	
	C-band Klystron		488	22	30	
	Beam Delivery and				15	
IP	FF		148	7		
	IR		184	8		
	Civil Eng		114	11453961828		
Support Inf.	Common Facilities		396			
	Cryo-plant 133		6			
	Total		2260	100		

With these estimates the XCC would be 60% of the cost of C³ 250 GeV. Given the very early stage of the XCC design and the many XFEL technical challenges, it is important that these tables are viewed as illustrative, providing insight into the *potential* cost savings of the XCC.

Higgs Rate and Background for XCC vs Optical γγ Collider (OCC) & ILC

Machine	E_{e^-} (GeV)	N_{e^-} (nC)	Polarization	$N_{ m H}/{ m yr}$	$N_{\mathrm{Hadronic}}/N_{\mathrm{H}}$	$N_{\rm minbias/BX}$
XCC	62.8	1.0	$90\%~e^-$	$34,\!000$	170	9.5
OCC	86.5	1.0	$90\%~e^-$	30,000	540	50
ILC	125	3.2	$-80\% \ e^- + 30\% \ e^+$	42,000	140	1.3
ILC	125	3.2	$+80\% \ e^- \ -30\% \ e^+$	$28,\!000$	60	1.3

Alternative Polarization for Scanning Higgs Resonance

Narrower leading edge width (45 MeV) at cost of lower Higgs rate. Width dominated by $0.05\% e^-$ energy spread.

A Higgs resonance scan can measure the total width to 4.5 MeV, i.e., a 112% measurement if the width has the SM value. A total Higgs width \gg 4 MeV is not ruled out by LHC data, but would require, for example, a conspiracy of a universal kappa scale factor $\kappa_0 > 1$ combined with $B_{BSM} \approx 1 - \kappa_0^{-2}$ assuming LHC kappa ratios $\rightarrow 1$ with ever greater precision:

$$\frac{\boldsymbol{\kappa}_{0} \quad \boldsymbol{B}_{BSM} (\%) \quad \Gamma_{H} (MeV)}{1.4 \quad 49 \quad 15} \iff \Gamma_{H} \text{ assuming universal } \boldsymbol{\kappa}_{0} , \boldsymbol{B}_{BSM} = 1 - \boldsymbol{\kappa}_{0}^{-2} , \frac{\boldsymbol{\kappa}_{g} \boldsymbol{\kappa}_{Z}}{\boldsymbol{\kappa}_{H}} = \frac{\boldsymbol{\kappa}_{W}}{\boldsymbol{\kappa}_{Z}} = \frac{\boldsymbol{\kappa}_{g}}{\boldsymbol{\kappa}_{Z}} = \frac{\boldsymbol{\kappa}_{g}}{\boldsymbol{\kappa}_{Z}} = \cdots = 1$$

$$1.0 \quad 0 \quad 4$$

(also LHC off-shell $H^* \rightarrow ZZ$ measurements would have to be addressed)

Another possible application of the alternative polarization is improved signal-to-background. Detailed studies are required to determine if this improvement can compensate for the loss in signal statistics.

Measurement of Γ_{γ} using $e^{-\gamma} \rightarrow e^{-H}$ at E_{cm} =140 GeV

If, as is likely, a direct 5 MeV measurement of the Higgs width corresponds to a large fractional error, then individual Higgs partial widths and the total Higgs width will have to be extracted at XCC by measuring Γ_{γ} through $e^-\gamma \rightarrow e^-H$ at $\sqrt{s} = 140$ GeV. This is the XCC analog of the e^+e^- Higgs factory measurement of Γ_z through Higgs recoil in $e^+e^- \rightarrow ZH$.

The signal is a monochromatic 14.2 GeV electron, predominantly in the forward direction. In order to achieve model independent ILC-like precision for Higgs couplings and the total Higgs width, about $1 e^-\gamma \rightarrow e^-H$ event must be detected at 140 GeV per 125 $\gamma\gamma \rightarrow H$ events collected at 125 GeV. $\sigma(e^-\gamma \rightarrow e^-H) = 4.1$ fb at 140 GeV assuming forward detector coverage down to $\theta > 3$ mrad (there is no Compton scatter background on this side of the IP in $e^-\gamma$ collisions). With the current $e^-\gamma$ collider design, the yearly luminosity with $\sqrt{\hat{s}}$ within 1% of the 140 GeV peak is 32 fb⁻¹ \Rightarrow for every year collecting Higgs events at $\sqrt{s} = 125$ GeV, two years must be spent producing $e^-\gamma \rightarrow e^-H$ at 140 GeV.

XCC Coupling Errors Using EFT Higgs Program

	ILC	XCC	
coupling <i>a</i>	∆ a (%)	∆ a (%)	ILC: $0.5 \times 10^6 e^+ e^- \rightarrow ZH$ events
HZZ	0.57	1.2	full 2 ab ⁻¹ $\sqrt{s} = 250 \text{ GeV}$
HWW	0.55	1.2	10 year program
Hbb	1.0	1.4	
Ηττ	1.2	1.4	XCC: $0.5 \times 10^6 \gamma \gamma \rightarrow \text{H events}$
Hgg	1.6	1.7	$4000 \ e^{-\gamma} \rightarrow e^{-}$ H events
Нсс	1.8	1.8	A years $m \rightarrow H \otimes \sqrt{s} - 125 \text{ GeV}$
Ηγγ	1.1	0.77	= 123 GeV
ΗγΖ	9.1	10.0	8 years $e \gamma \rightarrow e$ H $(a) \sqrt{s} = 140$ GeV
Ημμ	4.0	3.8	assuming $n_{bunch} = 76 \rightarrow 290$
Γ_{tot}	2.4	3.8	$\frac{-80\% e^{-}, +30\% e^{+} \text{ polarization:}}{250 \text{ GeV}}$
${\Gamma_{\mathrm{inv}}}^\dagger$	0.36	—	$\frac{Zh}{\sigma} \frac{\nu \overline{\nu}h}{2k} \frac{Zh}{\nu \overline{\nu}h} \frac{\nu \overline{\nu}h}{2k} \frac{Zh}{2k} \frac{\nu \overline{\nu}h}{2k} \frac{Zh}{2k} \frac{\nu \overline{\nu}h}{2k} \frac{Zh}{2k} \frac{Vh}{2k} $
${\Gamma_{\mathrm{other}}}^\dagger$	1.6	2.7	Use ILC σ XBR measurement errors for XCC: $\frac{h \rightarrow b\overline{b}}{1.3} = 1.4 \qquad 3.4 \qquad 3$
[†] 95% C.L.]	limit		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

7

 34^*

72

7.6

2.7

-99.17

 $h
ightarrow \gamma \gamma$

 $h
ightarrow \mu \mu$

 $\rho(a,b)$

 \overline{a}

 \boldsymbol{b}

 39^*

 2.7^{*}

 0.69^{*}

 -95.6^{*}

 45^{*}

 87^* 160^{*} 120 100

47

4.0

0.70

-84.8

27

The e⁻γ Luminosity Problem

With the current $e^{-\gamma}$ collider design, the Higgs rate in $e^{-\gamma}$ collisions at $\sqrt{s} = 140$ GeV is 0.8% of the rate in $\gamma\gamma$ collisions at $\sqrt{s} = 125$ GeV. This is an unsatisfactory situation as 2/3 of the running time is spent waiting for $e^{-\gamma} \rightarrow e^{-H}$ events to dribble in at $\sqrt{s} = 140$ GeV. Another related issue is the factor of 3.8 increase in the number of bunches per train required to achieve ILC-like Higgs precision over 12 years. Only a factor of 2 increase in the number of bunches per train at XCC is required to match the ILC's count of 0.5×10^6 Higgs bosons over a decade (note that ILC also assumes a 2x luminosity upgrade).

The e^-e^- geometric luminosity for $e^-\gamma$ collisions is 11×10^{34} cm⁻² s⁻¹ and yet the $e^-\gamma$ luminosity within 1% of the 140 GeV peak is only 0.09×10^{34} cm⁻² s⁻¹ for symmetric x and y emttiances.

Large coherent e^+e^- pair production leads to pinching of the opposite e^- beam which further increases the E_{field} leading to more positron production and pinching in a feedback manner (new effect discovered in XCC study).

$e^-\gamma \mod \sqrt{s} = 140 \text{ GeV}$					
	Luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$				
Process	Total	$\sqrt{\hat{s}} > 139 { m ~GeV}$			
$e^-\gamma$	139	0.09			
$\gamma\gamma$	292	-			
e^-e^+	173	-			
γe^+	171	-			
γe^-	4.5	_			
e^-e^-	0.9	-			
$e^+\gamma$	3.0	_			
e^+e^-	0.06	-			

 $\gamma \varepsilon_{r} = 120 \text{ nm}$ $\gamma \varepsilon_{r} = 120 \text{ nm}$

8

The e⁻γ Luminosity Problem

Solution for now is to go to asymmetric emittances

γε _x =12	0 nm	$\gamma \varepsilon_y = 120 \text{ nm}$		$\gamma \varepsilon_x = 1$	200 nm	$\gamma \varepsilon_y = 12 \text{ nm}$
$e^-\gamma \mod \sqrt{s} = 140 \text{ GeV}$			$e^-\gamma \mod \sqrt{s} = 140 \text{ GeV}$			
Luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$			Luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$			
Process	Total	$\sqrt{\hat{s}} > 139 { m ~GeV}$		Process	Total	$\sqrt{\hat{s}} > 139 { m ~GeV}$
$e^-\gamma$	139	0.09		$e^-\gamma$	11.5	0.32
$\gamma\gamma$	292	-	\rightarrow	$\gamma\gamma$	14.5	-
e^-e^+	173	-		e^-e^+	13.4	-
γe^+	171	-		γe^+	11.3	-
γe^-	4.5	-		γe^-	0.92	-
e^-e^-	0.9	-		e^-e^-	0.43	0.07
$e^+\gamma$	3.0	-		$e^+\gamma$	0.09	-
e^+e^-	0.06	-		e^+e^-	0.01	-

Ultimately we would like to suppress the $\mathsf{E}_{\mathsf{field}}$

- Introduce a plasma to neutralize the IP (suggestion by F. Zimmerman to reduce the anti-pinch in e⁻e⁻ collisions)
- Studies using CAIN indicate that the introduction of an additional 10 GeV e⁻ beam with suitable timing and location could deflect the Compton-scattered beam just enough to significantly suppress beamstrahlung and coherent e⁺e⁻ pair-production.

Energy upgrade to Ecm=280 GeV for Higgs Self Coupling Study

2012 Study

A feasibility study of the measurement of Higgs pair creation at a Photon Linear Collider

Shin-ichi Kawada¹,* Nozomi Maeda¹, Tohru Takahashi¹, Katsumasa Ikematsu², Keisuke Fujii³, Yoshimasa Kurihara³, Koji Tsumura⁴, Daisuke Harada⁵, and Shinya Kanemura⁶
¹Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
²Department für Physik, Universitä Siegen, D-57068, Siegen, Germany
³High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
⁴Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
⁵Centre for High Energy Physics, Indian Institute of Science, Bangalore, 560012, India and ⁶Department of Physics, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan

FIG. 3. Statistical sensitivity ($S_{\rm stat}$) as a function of $\gamma\gamma$ collision energy. Black and red dots show the $\delta\kappa$ = +1 and $\delta\kappa$ = -1 cases.

Optimum sensitivity at $\sqrt{s_{\gamma\gamma}} = 280 \text{ GeV}$ Used optical laser for Compton scattering

2.8 km footprint

assuming gradient 70 MeV/m \rightarrow 120 MeV/m (C³ uses assumes this gradient upgrade to get from E_{cm} =250 \rightarrow 500 GeV)

 $\sigma(\gamma\gamma \to HH) @ \sqrt{s} = 280 \text{ GeV} \approx \sigma(e^+e^- \to ZHH) @ \sqrt{s} = 500 \text{ GeV}$ Need to redo the KEK $\gamma\gamma \to HH$ study with the XCC $\gamma\gamma$ spectrum.

Photon Science at XCC - HEDS Fusion Example

XCC Physics Summary

- The XCC at E_{cm} =125-140 GeV can measure absolute Higgs couplings in a model independent manner with an accuracy of order 1%. This is pretty close to the ILC precision. To fully match or exceed the ILC Higgs coupling accuracy, a way must be found to increase the top 1% e- γ luminosity at E_{cm} =140 GeV.
- The Higgs self coupling can be studied via γγ→HH if the XCC energy is upgraded to E_{cm}=280 GeV. Given that σ(γγ→HH) ~ σ(e⁺e⁻→ZHH), the Higgs self coupling sensitivity for XCC will probably be comparable to ILC at E_{cm}=550 GeV
- There are strong synergies between XCC and the XFEL program at SLAC. Solutions to high energy/pulse XFEL production and focusing issues at XCC will lead to new opportunities in XFEL photon science.