

Emilio Nanni SLACmass 5/12/2022

Acknowledgements

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17661 April 12, 2022

Strategy for Understanding the Higgs Physics: The Cool Copper Collider

Editors:

Sridhara Dasu⁴⁴, Emilio A. Nanni³⁵, Michael E. Peskin³⁶, Caterina Vernieri³⁶

Contributors:

TIM BARKLOW³⁶, RAINER BARTOLDUS³⁶, PUSHPALATHA C. BHAT¹⁴, KEVIN BLACK⁴⁴, JIM BRAU²⁹, MARTIN BREIDENBACH³⁶, NATHANIEL CRAIG⁷, DMITRI DENISOV³, LINDSEY GRAY¹⁴, PHILIP C. HARRIS²⁴, MICHAEL KAGAN³⁶, ZHEN LIU²³, PATRICK MEADE³⁶, NATHAN MAJERNIK⁶, SERGEI NAGAITSEV^{†14}, ISOBEL OJALVO³², CHRISTOPH PAUS²⁴, CARL SCHNOEDER¹⁷, ARIEL G. SCHWARTZMAN³⁶, JAN STRUBE^{29,30}, SU DONG³⁶, SAMI TANAWI³⁶, LIAN-TAO WANG¹⁰, ANDY WHITE³⁸, GRAHAM W. WILSON²⁶

Endorsers:

KAUSTUBH AGASHE²¹, DANIEL AKERIB³⁶, ARAM APYAN², JEAN-FRANÇOIS ARGUIN²⁵, CHARLES BALTAY⁴⁵, BARRY BARISH⁴⁹, WILLIAM BARLETTA²⁴, MATTHEW BASSO⁴¹, LOTHAR BAUERDICK¹⁴, SERGEY BELOMESTNYKH^{41,37}, KENNETH BLOOM²⁷, TULIKA BOSE⁴⁴, QUENTIN BUAT⁴³, YUNHAI CAI³⁶, ANADI CANEPA¹⁴, MARIO CARDOSO³⁶, VIVIANA CAVALIERE³, SANHA CHEONG^{†36}, RAYMOND T. CO²³, JOHN CONWAY⁵, PALLABI DAS³², CHRIS DAMERLI³⁵, SALLY DAWSON³, ANKUR DHAR³⁶.

JOIN CONWAY⁹, PALLABI DAS²⁵, CHRIS DAMERELL³⁵, SALLY DAWSON⁹, ANKUR DHAR³⁶, FRANZ-JOSEF DECKER³⁶, MARCEL W. DEMARTEAU²⁸, LANCE DIXON³⁶, VALERY DOLGASHEV³⁶, ROBIN ERBACHER⁵, ERIC ESAREY¹⁷, PIETER EVERAERTS⁴⁴, ANNIKA GABRIEL³⁶, LIXIN GE³⁶, SPENCER GESSNER³⁶, LAWRENCE GIBBONS¹², BHAWNA GOMER¹⁵, JULIA GONSH¹¹, STEFANIA GORI⁸, PAUL GRANNIS³⁶, HOWARD E. HABER⁸, NICOLE M. HARTMAN¹³⁶, JEROME HASTINGS³⁶, MATT HERNDON⁴⁴, NIGEL HESSEY⁴², DAVID HITLIN⁹, MICHAEL HOGANSON³⁶, ANSON HOOK²¹, HAOYI (KENNY) JIA⁴⁴, KETINO KAADZE²⁰, MARK KEMP³⁶, CHRISTOPHER J. KENNEY³⁶, ARKADIY KLEBANER¹⁴, CHARIS KLEIO KORAKA⁴⁴, ZENGHAI LI³⁶, MATTHIAS LIEPE¹², MIAOYUAN LU³³, SHIVANI LOMTE¹⁴⁴, IAN LOW^{†1}, YANG MA³¹, THOMAS MARKIEWICZ³⁶, PERKA MERKEL¹⁴, BERNHARD MISTLBERGER³⁶, ABDOLLAH MOHAMMADI⁴⁴, DAVID MONTANARI¹⁴, CHRISTOPHER NANTISTA³⁶, MEENAKSHI NARAIN⁴,

TIMOTHY NELSON³⁶, CHO-KUEN NG³⁶, ALEX NGUYEN³⁶, JASON NIELSEN⁸, MOHAMED A. K. OTIMAN³⁶, MARC OSHERSON³³, KATHERINE PACHAL⁴², SIMONE PAGAN GRISO¹⁷, DENNIS PALMER³⁶, EWAN PATERSON³⁶, RITCHIE PATTERSON¹², JANNICKE PEARKESI³⁶, NAN PHINNEY³⁶, LUISE POLEY⁴², CHRIS POTTER²⁹, STEFANO PROFUMO¹⁸, THOMAS G. RIZZO³⁶, RIVER ROBLES³⁶, AARON ROODMAN³⁶ JAMES ROSENZWEIG⁶, MURTAZA SAFDARI¹³⁶, PIERRE SAVARD^{41,42}, ALEXANDER SAVIN⁴⁴, BRUCE A. SCHUMM¹⁸, ROY SCHWITTERS³⁹, VARUN SHARMA⁴⁴, VLADIMIR SHILTSEV¹⁴, EVGENYA SIMAKOV¹⁹, JOHN SMEDLEY¹⁹, EMMA SINVELY³⁶, BRUNG SPATARO¹⁶, MARCEL STANITZKI¹³, GIORDON STARK¹⁸, BERND STELZER¹⁴², OLIVER STELZER-CHILTON⁴², MAXIMILIAN SWIATLOWSKI⁴², RICHARD TEMKIN²⁴,

JULIA THOM¹², ALESSANDRO TRICOLI³, CARL VUOSALO⁴⁴, BRANDON WEATHERFORD³⁶, GLEN WHITE³⁶, STEPHANE WILLOCQ²², MONIKA YADAV^{6,18}, VYACHESLAV YAKOVLEV¹⁴, HITOSHI YAMAMOTO⁴⁰ CHARLES YOUNG³⁶, LILING XIAO³⁶, ZIJUN XU³⁶, JINLONG ZHANG¹, ZHI ZHENG³⁶ Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

> SLAC-PUB-17660 April 12, 2022

C^3 Demonstration Research and Development Plan

Editors:

Emilio A. Nanni⁶, Martin Breidenbach⁶, Caterina Vernieri⁶, Sergey Belomestnykh^{2,7}, Pushpalatha Bhat² and Sergei Nagaitsev^{2,10}

Authors:

MEI BAI⁶, TIM BARKLOW⁶, ANKUR DHAR⁶, RAM C. DHULEY², CHRIS DOSS⁹, JOSEPH DURIS⁶, AURALEE EDELEN⁶, CLAUDIO EMMA⁶, JOSEF FRISCH⁶, ANNIKA GABRIEL⁶, SPENCER GESSNER⁶, CARSTEN HAST⁶, ARKADIY KLEBANER², ANATOLY K. KRASNYKH⁶, JOHN LEWELLEN⁶, MATTHIAS LIEPE¹, MICHAEL LITOS⁹, JARED MAXSON¹, DAVID MONTANARI², PIETRO MUSUMECI⁸, CHO-KUEN NG⁶, MOHAMED A. K. OTHMAN⁶, MARCO ORIUNNO⁶, DENNIS PALMER⁶, J. RITCHIE PATTERSON¹, MICHAEL E. PESKIN⁶, THOMAS J. PETERSON⁶, JI QIANG³, JAMES ROSENZWEIG⁸, VLADIMIR SHILTSEV, EVGENYA SIMAKOV⁴, BRUNO SPATARO⁵, EMMA SNIVELN⁶, SAMI TANTAWI⁶, BRANDON WEATHERFORD⁶, AND GLEN WHITE⁶

More Details Here (Follow, Endorse, Collaborate):

https://indico.slac.stanford.edu/event/7155/

¹Cornell University

²Fermi National Accelerator Laboratory
 ³Lawrence Berkeley National Laboratory
 ⁴Los Alamos National Laboratory
 ⁵National Laboratory of Frascati, INFN-LNF
 ⁶SLAC National Accelerator Laboratory, Stanford University
 ⁷Stony Brook University
 ⁸University of California, Los Angeles
 ⁹University of Chicago

Additional Contributors

Mitchell Schneider Charlotte Whener Gordon Bowden Andy Haase Julian Merrick Bob Conley Radiabeam Cici Hanna

> SLAC-PUB-17629 November 1, 2021

 C^3 : A "Cool" Route to the Higgs Boson and Beyond

Mei Bai, Tim Barklow, Rainer Bartoldus, Martin Breidenbach^{*}, Philippe Grenier, Zhirong Huang, Michael Kagan, Zenghai Li, Thomas W. Markiewicz, Emilio A. Nanni^{*}, Mamdouh Nasr, Cho-Kuen Ng, Marco Oriunno, Michael E. Peskin^{*}, Thomas G. Rizzo, Ariel G. Schwartzman, Dong Su, Sami Tantawi, Caterina Vernieri^{*}, Glen White, Charles C. Young

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025

John Lewellen, Evgenya Simakov

Los Alamos National Laboratory, Los Alamos, NM 87545

JAMES ROSENZWEIG

Department of Physics and Astronomy, University of California, Los Angeles, CA 90095

Bruno Spataro

INFN-LNF, Frascati, Rome 00044, Italy

VLADIMIR SHILTSEV

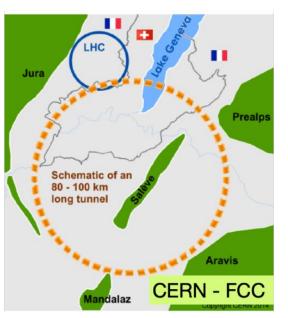
Fermi National Accelerator Laboratory, Batavia IL 60510-5011

Various Higgs Factory Proposals for Next Collider

250/500 GeV

SLACmass

SLAC

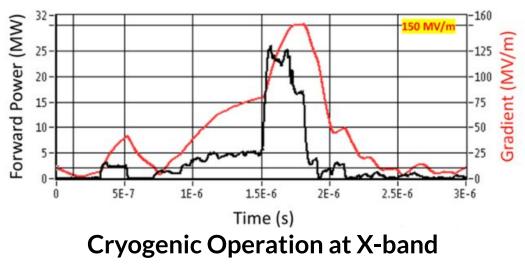


CEPC 240 GeV CLIC 380/1000/3000 GeV

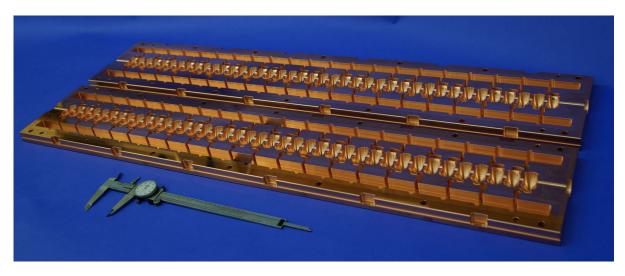
FCC-ee 240/365 GeV COOL COPPER COLLIDER

250/550 GeV ... > TeV

C³ is based on a new rf technology


• Dramatically improving efficiency and breakdown rate

Distributed power to each cavity from a common RF manifold


Operation at cryogenic temperatures (LN₂ ~80 K)

Robust operations at high gradient: 120 MeV/m Scalable to multi-TeV operation


High Gradient Operation at 150 MV/m

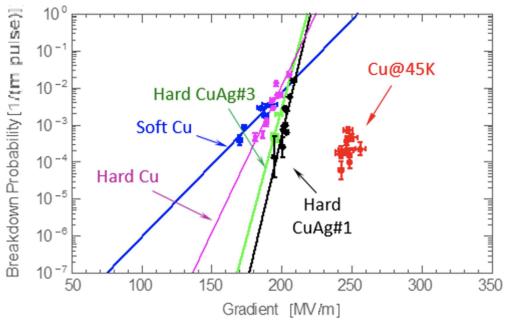
C³ Prototype One Meter Structure

High power Test at Radiabeam

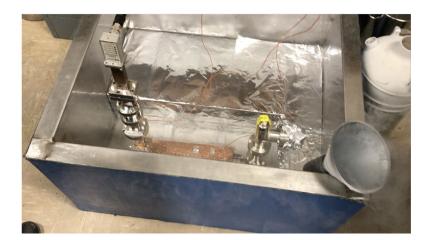
Cryo-Copper: Enabling Efficient High-Gradient Operation

Cryogenic temperature elevates performance in gradient

- Increased material strength is key factor
- Increase electrical conductivity reduces pulsed heating in the material


Operation at 77 K with liquid nitrogen is simple and practical

- Large-scale production, large heat capacity, simple handling
- Small impact on electrical efficiency


$$\eta_{cp} = LN \ Cryoplant$$

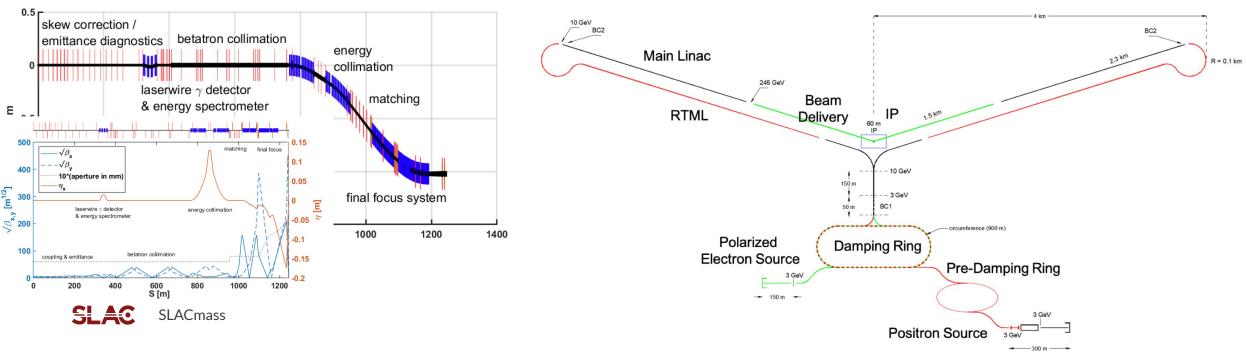
 $\eta_{cs} = Cryogenic \ Structure$
 $\eta_k = RF \ Source$

$$\frac{\eta_{cs}}{\eta_k}\eta_{cp} \approx \frac{2.5}{0.5} [0.15] \approx 0.75$$

SLAC

Cahill, A. D., et al. PRAB 21.10 (2018): 102002.

8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m


7 km footprint at 155 MeV/m for 550 GeV CoM – present Fermilab site Large portions of accelerator complex are compatible between LC technologies

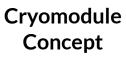
- Beam delivery and IP modified from ILC (1.5 km for 550 GeV CoM)
- Damping rings and injectors to be optimized with CLIC as baseline
- Costing studies use LC estimates as inputs

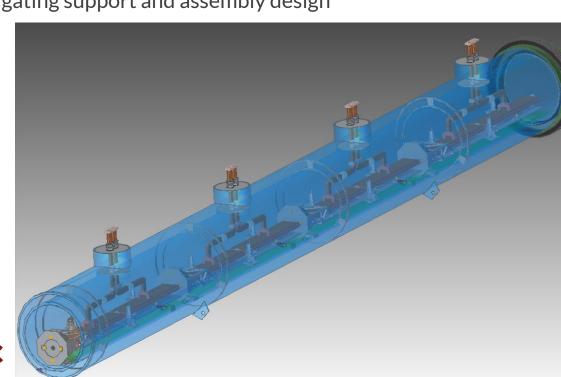
C³ - Investigation of Beam Delivery (Adapted from ILC/NLC)

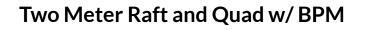
Ε

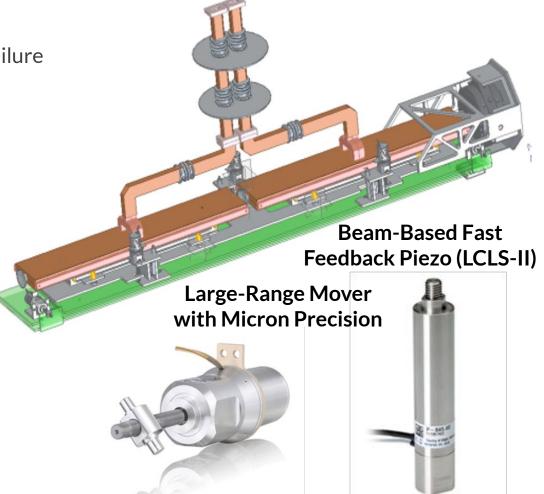
[^{1/2}] 300

C³ - 8 km Footprint for 250/550 GeV

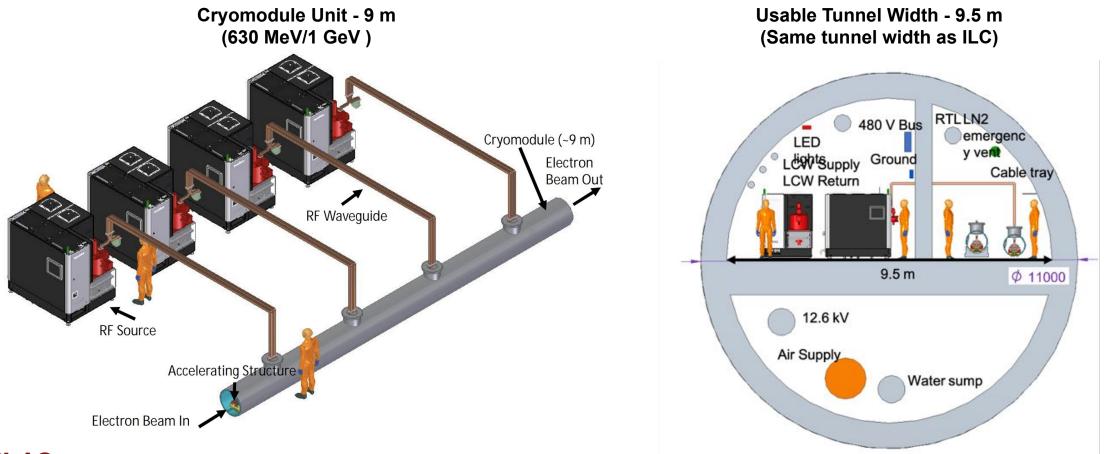

Cryomodule Design and Alignment


Up to 1 GeV of acceleration per 9 m cryomodule; ~90% fill factor with eight 1 m structures


Main linac will require 5 micron structure alignment


- Combination of mechanical and beam based alignment Pre-alignment warm, cold alignment by wire, followed by beam based
- Mechanical motor runs warm or cold no motion during power failure
- Piezo for active alignment

Investigating support and assembly design



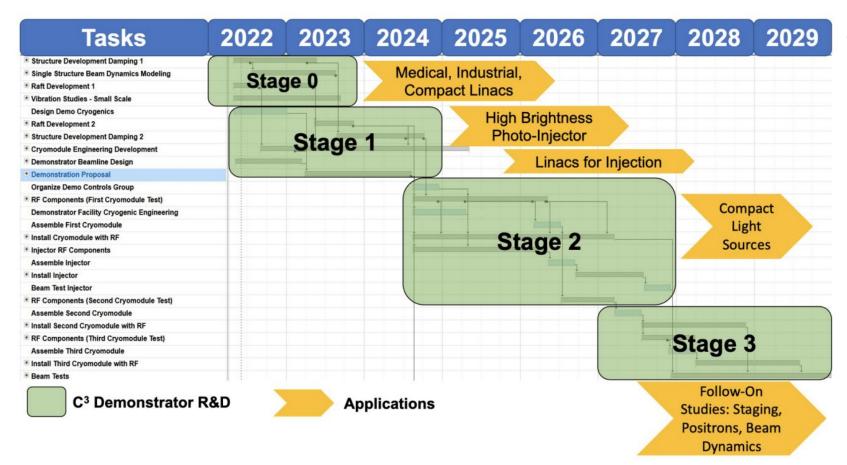
Tunnel Layout for Main Linac 250/550 GeV CoM

Need to optimize tunnel layout – first study looked at 9.5 m inner diameter in order to match ILC costing model

• Must minimize diameter to reduce cost and construction time

Surface site (cut/cover) provides interesting alternative - concerns with length of site for future upgrade

C³ Demonstration R&D Plan

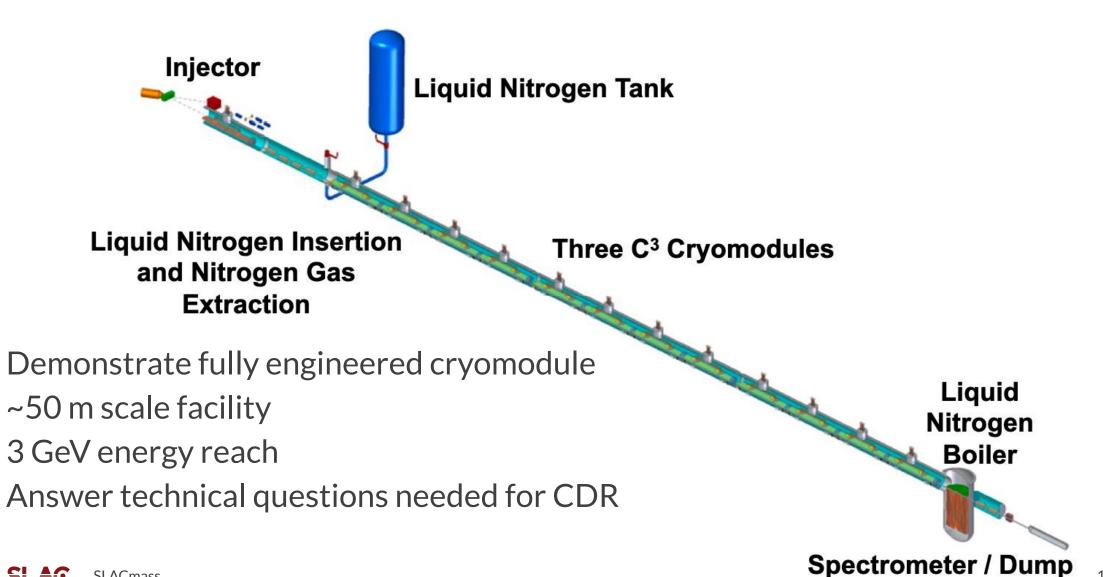

C³ demonstration R&D needed to advance technology beyond CDR level Minimum requirement for Demonstration R&D Plan:

- Demonstrate operation of fully engineered and operational cryomodule
 - Simultaneous operations of min. 3 cryomodules
- Demonstrate operation during cryogenic flow equivalent to main linac at full liquid/gas flow rate
- Operation with a multi-bunch photo injector high charges bunches to induce wakes, tunable delay witness bunch to measure wakes
- Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch
 - Must understand margins for 120 targeting power for (155 + margin) 170 MeV/m
 - 18X 50 MW C-band sources off the shelf units
- Fully damped-detuned accelerating structure
- Work with industry to develop C-band source unit optimized for installation with main linac

This demonstration directly benefits development of compact FELs, beam dynamics, high brightness guns, *etc.* The other elements needed for a linear collider - the sources, damping rings, and beam delivery system – more advanced from the ILC and CLIC – need C³ specific design

• Our current baseline uses these directly; will look for further cost-optimizations for of C³

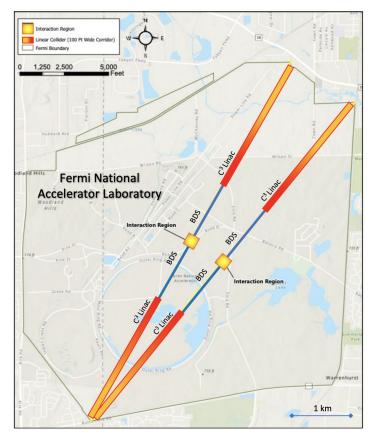
C³ Demonstration R&D Plan timeline


High Energy Physics: Caterina Vernieri <u>caterina@slac.stanford.edu</u> Accelerator Science & Engineering: Emilio Nanni <u>nanni@slac.stanford.edu</u> C³ R&D, System Design and Project Planning are ongoing

- Early career scientists should help drive the agenda for an experiment they will build/use
 - Many opportunities for other institutes to collaborate on:

 beam dynamics, vibrations and alignment, cryogenics, rf engineering, controls, detector optimization, background studies, etc.

The Complete C³ Demonstrator


Conclusion

Next C³ Workshop in Planning - May 17-18th @ Fermilab (<u>https://forms.gle/QoepjKu1j9AuDf6j8</u>)

 \mbox{C}^3 can provide a rapid route to precision Higgs physics with a compact 8 km footprint

- Higgs physics run by 2040
- Possibly, a US-hosted facility
- C³ time structure is compatible with SiD-like detector overall design and ongoing optimizations.
- C^3 can be quickly be upgraded to 550 GeV
- $\rm C^3$ can be extended to a 3 TeV e+e- collider with capabilities similar to CLIC

With new ideas, the C³ lab can provide physics at 10 TeV and beyond

More Details Here (Follow, Endorse, Collaborate):

https://indico.slac.stanford.edu/event/7155/

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Acknowledgements

SLAC-PUB-17659 May 12, 2022

XCC: An X-ray FEL-based $\gamma\gamma$ Collider Higgs Factory

Tim Barklow^{1,a}, Su Dong¹, Claudio Emma¹, Joseph Duris¹, Zhirong Huang¹, Adham Naji¹, Emilio Nanni¹, James Rosenzweig², Anne Sakdinawat¹, Sami Tantawi¹, and Glen White¹

¹SLAC Linear Accelerator Center, Stanford, Menlo Park, CA ²Particle Beam Physics Laboratory, University of California Los Angeles, CA ^atimb@slac.stanford.edu

Abstract

This report describes the design of a $\gamma\gamma$ Higgs factory in which 62.8 GeV electron beams collide with 1 keV X-ray free electron laser (XFEL) beams to produce colliding beams of 62.5 GeV photons. The Higgs boson production rate is 34,000 Higgs bosons per 10⁷ second year, roughly the same as the ILC Higgs rate. The electron accelerator is based on cold copper distributed coupling (C³) accelerator technology. The 0.7 J pulse energy of the XFEL represents a 300-fold increase over the pulse energy of current soft x-ray FEL's. Design challenges are discussed, along with the R&D to address them, including demonstrators.

arXiv:2203.08484v2 [hep-ex] 11 May 2022

XCC – Near Term R&D - 1nC/pulse 120 nm-rad RF Gun

2017 TOPGUN cold Cu RF gun design study indicated that 200 nm-rad emittance could be achieved with 1 nC/pulse

Now, an S-band cold Cu RF gun design study with a goal of 1 nC/pulse and 100 nm-rad emittance at 120 Hz is being considered as an LCLS-X initiative.

1st **Working Draft** of Quad Chart for High Brightness Gun LCLS-X initiative to be discussed tomorrow, May 13, 2022:

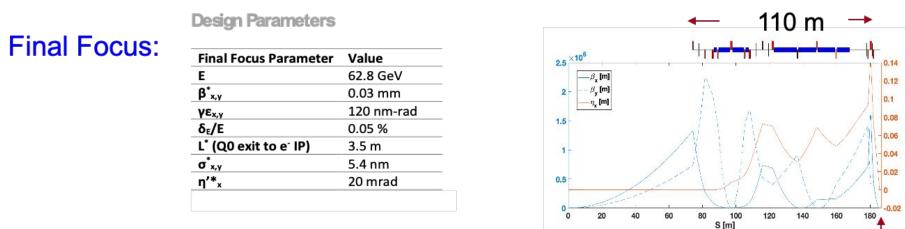
Emittance: 100 nm at undulator (NCRF)	
 What: Design a 50-nm emittance S-band gun Pursue low-MTE photocathode R&D Develop a photocathode transfer for NCRF gun Multi-pulse (in a train) laser R&D Study beam dynamics from gun to undulator to identify & prevent beam emittance dilution 	Why: Electron beam emittance has a strong impact on the number of photons per pulse generated by the CuRF linac FEL. The low-emittance gun producing a train of electron bunches will enable the generation of multiple, >100-mJ x-ray pulses at 1 keV photon energy for gamma-gamma collider X-ray optics demonstration. Also photon science applications in single molecule imaging, warm dense matter and high energy density science
 Who: List who is involved and at what fraction (FTE) & identify who the lead will be Lead: Tor Raubenheimer Gun design: Glen, Bruce, Emilio, Dinh, Mohamed Low-MTE photocathodes: Bruce, John Smedley Photocathode transfer: John Smedley Multi-pulse laser: Dinh Beam dynamics: Glen Collider & photon science applications: Tim, Dinh 	When: List intermediate milestones and expected completion dates

XCC – Near Term R&D - Production & Focusing of 100 mJ/pulse 1 keV X-rays

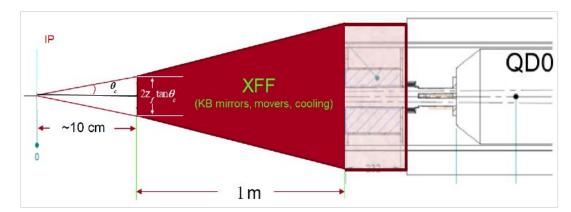
Assuming a 1nC/pulse 120 nm-rad emittance gun can be built, LCLS-NC Linac and undulator simulations indicate that the existing LCLS soft x-ray undulator (SXU) could deliver ~33 mJ/pulse with < 0.01% FWHM bandwidth. Add 9 more undulator segments to the SXU and 110 mJ/pulse could be achieved.

• XCC specifies that 700 mJ/pulse 1 keV x-ray beam be focused from 9000 nm at undulator exit to 70 nm at Compton IP

• Soft x-rays are harder to focus to sub-micron spot sizes than hard x-rays, so that two difficult problems (soft x-ray focussing and high power) have to be addressed.


100 mJ/pulse 1 keV photon beam from LCLS-NC can be used to design and validate high power soft x-ray optics. Photon science applications using 100 mJ/pulse soft x-ray beams will also need such focussing systems.

SLACmass


1037 CLS-NC new gun + 9 undu 1035 LCLS-NC new gun only Peak brightness (photons / s / mrad² / mm² / 0.1%-BVV) 1033 LCLS-NC now self-seeding SACLA European ... LCLS XFEL 10³¹ FLASH **FERMI@Elettra** 10²⁹ 10²⁷ 10²⁵ PETRA III SPring-8 ESRF 10²³ APS SLS 10²¹ BESSY 10¹⁹ 10⁵ 10⁶ 10 Photon energy (eV)

XCC – Near Term R&D - Accelerator design and beam dynamics

High compression accelerator optics w/ low beam energy spread of 0.05% needs to be investigated in conjunction with gun design

- Round beam FF, not tested experimentally
- 5X smaller beta function than CLIC; demands investigation of tolerances
- Integration of FF with X-ray optics, L* optimization, etc.

 \geq

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Acknowledgements

arXiv:2203.07622 [pdf, other] physics.acc-ph hep-ex hep-ph

The International Linear Collider: Report to Snowmass 2021

Authors: Alexander Aryshev, Ties Behnke, Mikael Berggren, James Brau, Nathaniel Craig, Ayres Freitas, Frank Gaede, Spencer Gessner, Stefania Gori, Christophe Grojean, Sven Heinemeyer, Daniel Jeans, Katja Kruger, Benno List, Jenny List, Zhen Liu, Shinichiro Michizono, David W. Miller, Ian Moult, Hitoshi Murayama, Tatsuya Nakada, Emilio Nanni, Mihoko Nojiri, Hasan Padamsee, Maxim Perelstein, et al. (450 additional authors not shown)

Abstract: The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This docu... ∇ More

Submitted 14 March, 2022; originally announced March 2022.

Comments: 356 pages, Large pdf file (39 MB) submitted to Snowmass 2021

Report number: DESY-22-045, IFT--UAM/CSIC--22-028, KEK Preprint 2021-61, PNNL-SA-160884, SLAC-PUB-17662

. arXiv:2204.02536 [pdf, other] physics.acc-ph

Next-Generation Superconducting RF Technology based on Advanced Thin Film Technologies and Innovative Materials for Accelerator Enhanced Performance and Energy Reach

Authors: A. - M. Valente-Feliciano, C. Antoine, S. Anlage, G. Ciovati, J. Delayen, F. Gerigk, A. Gurevich, T. Junginger, S. Keckert, G. Keppe, J. Knobloch, T. Kubo, O. Kugeler, D. Manos, C. Pira, T. Proslier, U. Pudasaini, C. E. Reece, R. A. Rimmer, G. J. Rosaz, T. Saeki, R. Vaglio, R. Valizadeh, H. Vennekate, W. Venturini Delsolaro , et al. (3 additional authors not shown)

Abstract: Superconducting RF is a key technology for future particle accelerators, now relying on advanced surfaces beyond bulk Nb for a leap in performance and efficiency. The SRF thin film strategy aims at transforming the current SRF technology by using highly functional materials, addressing all the necessary functions. The community is deploying efforts in three research thrusts to develop next-generat... \bigtriangledown More

Submitted 5 April, 2022; originally announced April 2022. Comments: Contribution to Snowmass 2021

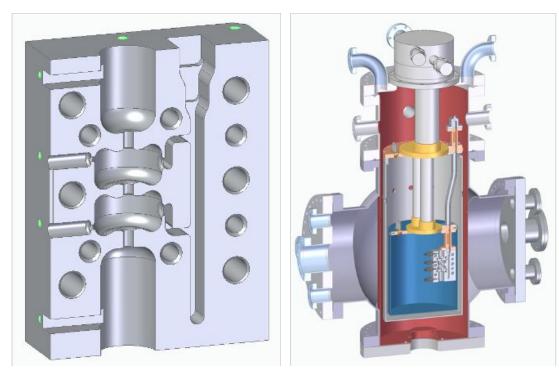
arXiv:2203.09718 [pdf] physics.acc-ph hep-ex

An Impartial Perspective for Superconducting Nb3Sn coated Copper RF Cavities for Future Accelerators

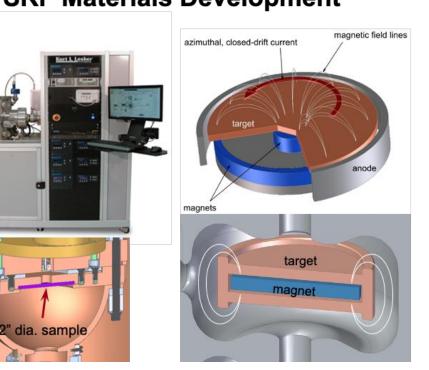
Authors: E. Barzi, B. C. Barish, R. A. Rimmer, A. Valente-Feliciano, C. M. Rey, W. A. Barletta, E. Nanni, M. Nasr, M. Ross, M. Schneider, S. Tantawi, P. B. Welander, E. I. Simakov, I. O. Usov, L. Alff, N. Karabas, M. Major, J. P. Palakkal, S. Petzold, N. Pietralla, N. Schäfer, A. Kikuchi, H. Hayano, H. Ito, S. Kashiwaji , et al. (10 additional authors not shown)

Abstract: This Snowmass21 Contributed Paper encourages the Particle Physics community in fostering R&D in Superconducting Nb3Sn coated Copper RF Cavities instead of costly bulk Niobium. It describes the pressing need to devote effort in this direction, which would deliver higher gradient and higher temperature of operation and reduce the overall capital and operational costs of any future collider. It is un... ∇ More Submitted 26 March, 2022; v1 submitted 17 March, 2022; originally announced March 2022.

Comments: Contribution to Snowmass 2021


Report number: FERMILAB-CONF-22-134-TD

Transformation of SRF Accelerator Technology with **Distributed Coupling Topology & Materials Research**


High gradient, higher temperature of operation, lower power consumption

SRF Parallel-Feed Linac Structure

magnetic field lines azimuthal, closed-drift current magnet target magnet dia. sample

SRF Materials Development

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Questions?