

Cryogenic Control and Readout Circuits

Shaorui Li

Outline

• Why do we use cryogenic circuits?

→ User cases: DUNE LAr TPC & IBM superconducting quantum computer

• How do transistors perform at cryogenic temperature?

 \rightarrow Higher gain, lower noise, but worse matching and shorter lifetime

- How do we design cryogenic circuits?
 - \rightarrow Optimize analog front-end for low noise in particle detectors
 - \rightarrow Optimize data converters for low power in quantum systems

It's the little details that are vital. Little things make big things happen. - John Wooden

A Readout Scheme of DUNE LAr TPC

IBM Superconducting Quantum System

Design Considerations and Constraints

- Low Noise: to achieve sufficient SNR to perform both calorimetry and particle identification. Mounting the readout electronics close to the sensor minimizes the input capacitance, which is typically a dominant factor for noise.
- Low Power Dissipation: to avoid large cross-section power cables and formation of bubbles of gaseous Ar, ~35 mW/channel.
- Low Cross Talk: to avoid interference with scaled-up channels (0.5 million in DUNE; long-term target of 1 million for superconducting quantum system).
- **Reliability**: reliable for the duration of the experiment (>20 years for DUNE); packaging and bonding must survive repeated thermal cycling.
- Operation Across Temperatures: functional at room temperature to simplify screening and prototype testing; prior to installation, all readout modules are to be characterized immersed in liquid nitrogen at 77K for DUNE (4K for control and readout in superconducting quantum systems).

180-nm CMOS: DC & Noise Characteristics at 300 K & 77 K

 V_{GS} (mV)

Fig. 8. Measured 20nmx80nm MOSFET g_m/W vs. I_{DS}/W and V_{BG} at 2 K and 300 K.

32-nm SOI MOSFET Noise Characterization Coskun et al. (U. Mass), MTT 2014

- With cooling from 293 to 6 K, intrinsic minimum noise temperature, Tmin, improves by approximately one order of magnitude at frequencies below 20 GHz and the improvement lessens at higher frequencies.
- Optimum source resistance, Ropt, decreases significantly with cooling: $R_{opt} = \sqrt{\left(\frac{f_t}{f}\right)^2 \frac{r_{gs}}{g_{ds}} \frac{T_g}{T_d} + r_{gs}^2}$

 TABLE II

 CRYOGENIC NOISE LIMITS OF SEMICONDUCTOR TECHNOLOGIES

Technology	Ref	Ta	T _{min} @5 GHz	T _{min} @20 GHz
-	-	K	K	K
130 nm SiGe HBT	[13]	18	2.2	8.1
130 nm InP HEMT*	[14]	10	1.2	5.6
32 nm SOI NMOS	This	6	0.8	3.8

*Results based upon model parameters provided in [14] and ignore gate leakage current.

Fig. 5. Frequency dependence of (a) T_{min} , (b) R_{opt} , (c) X_{opt} , and (d) R_n . Temperature dependence of (e) T_{min} , (f) R_{opt} , (g) X_{opt} , and (h) $N = R_n$.

🛠 Fermilab

40-nm Bulk MOSFET Mismatch Characterization

Hart et al. (Delft U./EPFL), JEDS 2020

- For most analog circuits operating in saturation region, current mismatch increase slightly from room to cryogenic temperature.
- For switches, mismatch degrades significantly during switching region from room to cryogenic operation, which may not affect functionality much, but may impact synchronization.
- Increasing length minimizes mismatch.

FIGURE 11. Drain-current mismatch as a function of temperature at a fixed G_m/I_D in saturation ($V_{DS} = 1.1$ V). a) $G_m/I_D = 5$ V⁻¹; b) $G_m/I_D = 10$ V⁻¹. Marks: measured data, lines: simplified Croon model as in Eq. (2). Arrow points in direction of decreasing W/L: 1.2 μ /40n, 360n/120n and 120n/40n.

FIGURE 9. Drain-current mismatch for NMOS devices as a function of temperature (V_{DS} = 50 mV). T = 4.2, 40, 100, 150, 200 and 300 K. a) W/L = 120n/40n; b) W/L = 360n/120n; c) W/L = 1.2 μ /400n. Dots: measured data; lines: simplified Croon model as in Eq. (2).

FIGURE 10. Drain-current mismatch for PMOS devices as a function of temperature ($|V_{DS}| = 50$ mV). T = 4.2, 40, 100, 150, 200 and 300 K. a) W/L = 120n/40n; b) W/L = 360n/120n; c) W/L = 1.2 μ /400n. Dots: measured data; lines: simplified Croon model as in Eq. (2).

40-nm Bulk MOSFET Mismatch Characterization Hart et al. (Delft U./EPFL), JEDS 2020

- Threshold mismatch at 4.2 K is slightly higher than at 300 K.
- Gain mismatch at 4.2 K is about twice higher than at 300 K.
- Increasing length minimizes mismatch.

Fermilab

180-nm, 130-nm, and 65-nm CMOS Cryogenic Lifetime Study

Fig. 4. Measured transconductance degradation versus time of an NMOS transistor (L = 180 nm, $W = 5 \times 2 \mu$ m) in accelerated stress tests at room temperature (RT) and at 77 K.

Fig. 6. Projected lifetime vs. $1/V_{ds}$ extracted from the stress measurement results shown in Fig. 5.

Li et al. (BNL), TNS 2013

Fig. 5. Normalized change in drain current with stress time at 77 K for transistors with different widths: (a) 130 nm technology, (b) 65 nm technology. The $20 \ \mu m/0.13 \ \mu m$ and $50 \ \mu m/0.13 \ \mu m$ transistors in 130 nm technology have 2 and 5 fingers, respectively, The $10 \ \mu m/0.06 \ \mu m$ and $25 \ \mu m/0.06 \ \mu m$ transistors in 65 nm technology, likewise, have 2 and 5 fingers, respectively. Fig. 6. Preliminary lifetime predictions for the 2 μ m/0.13 μ m and 10 μ m/0.06 μ m transistors at 77 K by degradation of g_m and I_{DS} and by increase of V_{TH} .

Hoff et al. (Fermilab), TNS 2015

Noise Sources in Readout Chain

ENC vs. Peaking Time

 A_{lk}

0.66

0.48

0.83 (*a*) $\Delta = 1$

0.38 (a) Δ=0.1

0.33

🚰 Fermilab

Charge Amplifier with Pole-Zero Cancellation

De Geronimo (BNL), Wiley 2009.

Fermilab

Optimizing Charge Amp Input Transistor

Shaper with Delayed Dissipative Feedback

A Low-Noise Silicon Photodiode Detector for X-ray Capillary Optics

Fig. 10. Spectra from (a) 55 Fe and (b) 241 Am taken with the ASIC as the front end. The inset in the lower plot shows the 241 Am spectrum zoomed in around the low energy lines. The FWHMs of the prominent lines are 211±8 eV at 5.9 keV, 283±7 eV at 13.9 keV, 302±7 eV at 17.8 keV, 296±24 eV at 20.8 keV, and 438±39 eV at 59.5 keV.

MIDNA: Low-Noise Skipper CCD Readout w/ Chopping Integrator

FNAL: Troy England, Hongzhi Sun, Davide Braga, Shaorui Li, Juan Estrada, Farah Fahim CNEA: Fabricio Alcalde Bessia, Miguel Sofo Haro

- Midna1 demonstrated very low noise performance
- Midna2: implemented on-chip reference and buffers to further improve low-noise performance and isolate coupling between channels; improved integrator dynamic range to facilitate larger pile-up range for off-chip processing, and improved integrator sensitivity by further lowering the input offset.

State-of-the-Art Cryo-Electronics for Quantum Computing

- Commercial instruments at room temperature is only feasible for < 100 qubits. > 1000 physical qubits will be required to encode 1 error-corrected qubit
- A practical quantum computer will need cryo-operation for compact and scalable control and readout circuits at 3~4K for 1 million qubits!

Low power: < 1mW/qubit; High resolution: 10~12 bit; Low noise: < 100nV/sqrt(Hz)

- Issues reported in recent publications (e. g. IBM_ISSCC'22, Intel_ISSCC'21, Delft/Intel_ISSCC'20, Google_ISSCC'19):
 - -Power consumption was 10x larger than the goal.
 - -DACs at 3K were significantly nonlinear and non-monotonic.
 - -Insufficient SNR, and high RMS error (e. g. 2.5% @300K -> 11.7% @3K).

	Amb. Temp.	RF Frequency	Envelope	Env. Amp	Pulse Duration	Amp. err.	Phase err	Inst. Set	AC+DC Pow	x
Prototype Goal Long-term Goal	3 K 3-to-4.2 K	4-to-8 GHz TBD	Symmetric DRAG	$> 10 \text{ mV} \\ > 1 \text{ mV}$	10-to-30 ns < 10 ns	< 0.25% < 0.25%	$< 0.22^{\circ} \\ < 0.22^{\circ}$	16 (4-bit) TBD	< 2.50 mV < 250 μV	N N
19 6/30/22										

KEY SPECIFICATIONS FOR CRYOGENIC XY CONTROLLER

Bardin et al., Google, JSSC 2019

Performance Comparison

	IBM	Delft/Intel	Delft/Intel	Google	
	ISSCC'22	ISSCC'21	ISSCC'20	ISSCC'19	
Ambient temperature (K)	3	4	3	3	
Qubit type	transmon	spin	spin & transmon	transmon	
Waveform type	arbitrary	arbitrary	arbitrary	envelope modulated RF pulse	
RF freq range (GHz)	4.5-5.5	11-17	2-20	4-8	
IF freq range (GHz)	DC-0.3	DC-0.7	DC-0.5	low-freq. envelope	
# channels	2	4	4	1	
NCOs	updateable phase rotations	64	64	0	
Sideband method	SSB	SSB	SSB	IQ mod	
DAC speed (GS/s)	1	2.5	1	1	
DAC bits	10	10	10	~11	
Output gain/attenuation range	50x	>56x	225x	n/a	
Waveform points	8K	16K	40K	22x16	
Pulse sequence length	4K or unlim	2K	2K	-	
General purpose instruction set	yes, 37 instructions	no (special only)	no (special only)	no	
Power/qubit under active control (mW)	23	90 (estimated)	190	2	
Chip area/channel (mm²)	1.61	~4	4	1.6	
Technology	14nm FinFET	22nm FinFET	22nm FinFET	28nm bulk	

Frank et. al (IBM), ISSCC 2022

14-nm FinFET 4-to-6 GHz Controller for Transmon Qubits Frank et al. (IBM), ISSCC 2022

14-nm FinFET 4-to-6 GHz Controller for Transmon Qubits Frank et al. (IBM), ISSCC 2022

Measured Single Channel Power: 23.1mW

22-nm FinFET 2-to-20GHz Readout and Control SoC for 16/32 Spin Qubits

Park et al. (Intel), ISSCC 2021, Patra et al. (Delft/Intel), ISSCC 2020, van Dijk et al. (Delft/Intel), JSSC 2020

Fig. 15. Power consumption breakdown, resulting in a total power consumption per qubit of (330 mW + 54 mW)/32 qubits = 12 mW/qubit.

28-nm CMOS 4-to-8GHz <2mW Pulse Modulator for Transmon Qubits Bardin et. al,

UMass/Google, ISSCC/JSSC 2019

*In both cases, the measured probabilities were limited by the readout error rate

[†]Error defined as the difference between the ideal result and the measured result. The ideal result has been corrected to account for readout fidelity. X and Y axes for CMOS IC are uncalibrated.

28-nm FDSOI Controller at 100-mK for GaAs Quantum Dots

Pauka et al (Microsoft), Nature Electronics 2021

10⁵

10⁴

10²

10¹

10⁰

Power (µW) 10 0.5 mm

100 µm

Cryogenic Ion Trap Controller

FNAL: Farah Fahim, Shaorui Li, Hongzhi Sun, Xiaoran Wang ORNL: Chris Seck, John Comish, Gilles Buchs, Raphael Pooser (ORNL) SBU: Dyumaan Arvind, Milutin Stanacevic

Design Challenges:

- Low output noise: < 100nV/sqrt(Hz) around axial frequency (0.5 5 MHz) and at low frequency
- Low power: < 5 mW/channel (limited by the cooling power of the cryostat) of +/- 10 V full scale at 1-10 MHz waveform updating rate
- Voltage resolution: 1mV for precise control
- Designed for the ion trap electrode with capacitance of 800 pF, leakage current of 10nA

Our Solutions:

- Ultra low-noise low-power solution using charge-mode arbitrary waveform generation
- High-voltage CMOS devices capable of +/- 5V range, along with lowpower digital control
- High-density memory for storage of base sets of waveforms

References

- C. Sleator, B. Phlips, M. Christophersen, S. Li, et al, "A Custom Low-Noise Silicon Photodiode Detector Designed for Use with X-ray Capillary Optics," *IEEE Trans. Nuclear Science*, vol. 68, no. 8, pp. 2249-2256, Aug. 2021.
- D. Braga, S. Li, and F. Fahim, "Cryogenic Electronics Development for High-Energy Physics," IEEE Solid-State Circuits Magazine, May 2021.
- P. A. t Hart, M. Babaie, E. Charbon, A. Vladimirescu, and F. Sebastiano, "Characterization and Modeling of Mismatch in Cryo-CMOS," J. Electron Devices Soc., vol. 8, pp. 263–273, Feb. 2020.
- S. Li, G. De Geronimo, and P. Barton, "An Ultra-Low-Noise Front-End ASIC for High-Purity Germanium Point-Contact Detectors in Liquid Nitrogen," IEEE NSS-MIC Conf. Rec., 2017.
- J. R. Hoff, G. W. Deptuch, G. Wu, and P. Gui, "Cryogenic lifetime studies of 130 nm and 65 nm nMOS transistors for high-energy physics experiments," IEEE Trans. Nucl. Sci., vol. 62, no. 3, pp. 1255–1261, June 2015.
- S. Li, J. Ma, G. De Geronimo, H. Chen, and V. Radeka, "LAr TPC electronics CMOS lifetime at 300 K and 77 K and reliability under thermal cycling", IEEE Trans. Nucl. Sci., vol. 60, no. 6, pp. 4737-4743, Dec. 2013.
- V. Radeka, G. De Geronimo, and S. Li, "Cryogenic Electronics for High Energy Physics Experiments", in Extreme Environment Electronics, Ed. J. D. Cressler and H. A. Mantooth, CRC Press, Boca Raton, FL, 2013.
- G. De Geronimo and S. Li, "Shaper design in CMOS for high dynamic range", IEEE Transactions on Nuclear Science, vol. 58, no. 5, pp. 2382-2390, Oct. 2011.
- G. De Geronimo, A. D'Anadragora, S. Li, N. Nambiar, S. Rescia, E. Vernon, H. Chen, F. Lanni, D. Makowiecki, V. Radeka, C. Thorn, and B. Yu, "Front-end ASIC for a liquid Argon TPC", IEEE Transactions on Nuclear Science, vol. 58, No. 3, pp.1376-1385, June 2011.
- G. De Geronimo, Low-Noise Electronics for Radiation Sensors. In: Medical Imaging, K. Iniewski (ed.), John Wiley & Sons, 2009.

