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Coherent X-rays from LCLS (2009)
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How do we develop the next generation of accelerators and what new science
does this enable? 6




RF Accelerators have been essential instruments of scientific
discoveries for decades

Experlmental validation of the Standard Model of Particle Physics
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Accelerators have advanced other fields of science, in addition to

particle physics

Partlcles travellng along a circular path emit synchrotron radiation

P X-rays
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Vacuum Chamber

Synchrotron is a 3" generation
x-ray light source, ca. 1970s

Power radiated ~ k x Energy*/R?

X-rays for research in biology,
chemistry, materials science

US DOE operates 4 national
synchrotron user facilities that
are fully subscribed

Stellar record of discoveries

Radiation is incoherent and
peak brightness is low. (more
like a dim flashlight)
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Synchrotron Radiation
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Radiation emitted from

any part of trajectory

Electron with acceleration
a (L1 to B), velocity v,
pitch angle o (not shown)
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Synchrotron N
radiation To observer

https://en.wikipedia.org/wiki/Synchrotron_radiation
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€, IS the vacuum permittivity,

q is the particle charge,

a is the magnitude of the acceleration,
c is the speed of light,

~ is the Lorentz factor.



Why X-Rays and how do we push the frontier of x-ray science?
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See through matter Where are the atoms?

Where are the electrons?
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Ultra-fast and Ultra-small: The New Frontier

Nature

motion ~ 1 ms

protein folding
~10 ps

molecular group
motion ~ 1 ns

circles in ~

hummingbird wing

Technology

atomic electron

1fs

10%s

1ms

camera shutter
speed ~ 130 us

g flash ~ 30 ps

6
+1pus

‘\TII Magnetic recording

time per bit ~1ns

Computing time
per bit ~ 100 ps

10"%s £ 1ps
atoms oscillate
in~ 100 fs
@ 10-155 1 fs

10-100 femtosecond
shutter speed
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Linac Coherent Light Source at SLAC

LCLS —first x-ray free-electron laser (XFEL) using last 1-km of
existing 3-km linac a
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A Free Electron Laser is a High Energy (5-12 GeV)
Electron Linac Coupled to an Undulator Magnet

Accelerator

* Free relativistic electrons in
bunch radiate in periodic H-field

« Amplification through electron
ordering in its own radiation

X-ray pulse parameters
* 1-100 femtoseconds
* Tunable energy to 20 keV

« Angstrom wavelength
* 120 Hz now, 1 MHz LCLS-II
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Inside View: LCLS Undulator Tunnel

* Lasing ‘campaign’ =
-started at 7PM on 4/10/09.

)y 10PM, the world’s first x-ray f ee
lectron laser was lasing!

experiments started 10/1/09
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How Molecular Imaging with X-rays Works

X-ray “camera” with shutter speed of 1-10 femtoseconds (10-°)
See atoms and electrons moving on their natural timescale to watch a chemical reaction
atom by atom
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So where do we go next?
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In Particle Physics the frontier is
e|eCtrOn-pOSitr0n collisions > 1 TeV |n X.ray Science the next ||ght source
will be > $1 B and the beam time will

The 5% studied with particle accelerators

1960-2000 \ likely be oversubscribed.

\

High Impact Applications for electron & ion
accelerators & RF technology

* Medicine | & e
* Energy & environment Materials Biology
» Security and defense
* Communications, radar & remote sensing 16




RF Accelerator Technology Got its Start With Key Technology
Developments in the decades Flanking WWII
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Use of RF resonant cavities
for particle acceleration

First 3-foot section of MARK |
electron linear accelerator at Stanford
(William Hansen and three of his
students) 1947.

Powerful RF sources

- Sigurd D. Webster Bill Hansen
Varian

Russell
Varian

250 MHz Klystron used for the U.S.
Army blind landing system before World

War Il, Stanford University, 1939.

%
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How an Radiofrequency Linear Accelerator Works
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Disk Loaded Waveguide Structure
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Accelerator Systems for Making Energetic Particles and Radiation

ol A

P e AN
RF Power Source
- — e Accelerator

Particle R Particle beam:
source e, —— N _, e-, e+, p, d+, ions

Interaction phenomena [ ==
_I_I_ producing particles or l \
photons- optical, vy, x-
Power rays Particle/Photon Radiation
supply/modulator
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Advanced Photon Source

« X-ray synchrotron
light sources
contain many of
the key
components of
accelerator
facilities
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Schematic View of the Advanced Photon Source
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Comparison with LHC Injection
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Particle (Electron) Sources

« Electrons emitted by

providing enough free
energy to overcome
binding energy
Thermionic, field and/or
photo emission

Need electric fields to

accelerate particles away
from the surface

DC Electron Gun

Cathode ‘

oV +V

7

thermionic
cathode

24



Real Electron Guns

DC Electron Gun

cathode
somewhere
inside

Emitter
heated to
1000 °C

RF Electron Gun

(A}

cooling hose
that you see
on most
accelerator
components

[ ]
)
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Fabrication of RF Accelerators

(a) OFHC forged copper;
(b) realization of cells

by lathes; (c) single cells
machined and ready to be
stacked; (d) cells piled up
before brazing; (e) the
structure in a vacuum or
hydrogen furnace; (f) the
brazed structure.




Phase of electromagnetic
wave needs to be
controlled to match the
particles velocity
Standing Wave - fields in
cavity alternate polarity in
cavities and oscillate
Traveling Wave — fields
propagate with a phase
velocity that matches
particle velocity

PRFin

PRFTW
m RF

Traveling Pge,
Wave
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Axial Electric Field Increases Kinetic Energy
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RF Sources Power the Accelerator

Output large 3 GHz signal
Collector

RF Source (Klystron)
Output cavity

Anode @

Cathode u

o Input small 3 GHz signal

30



Circuit Model for Powering Accelerators
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 High quality factor increases energy
gain for fixed power

Modulator
and klystron

Waveguide

Cavity
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RF and Beam Pulse Structure
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Magnets Guide and Transport the Beam .

Beam-pipe
in center of
symmetry
of magnet
aperture

_04x I [A-turn] 1 B,[T]

BT = 10" ~ Glam ol 2> BE(GeV]



Bending Magnets in the APS Ring
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APS Magnets Awaiting Installation
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Applications Side — X-ray Diffraction
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Applications Side — X-ray Imaging
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Applications Side — Colliders

» HEP community is pushing for e+e- collider to study the Higgs

* Initial state well defined & polarization = High-precision measurements

* Higgs bosons appear in 1 in 100 events = Clean experimental environment
and trigger-less readout

38



Linear vs. Circular

o Linear e*e- colliders: ILC, C3, CLIC
o Reach higher energies (~ TeV), and can use
o Relatively low radiation
o Collisions in bunch trains
o Circular ete- colliders: FCC-ee, CEPC
o Highest luminosity collider at ZZWW/Zh
o limited by synchrotron radiation above 350- 400 C
o Beam continues to circulate after collision

39



Collider Proposals....

CLIC 380/1 500/3000 GeV
THE TOHOKU REGION OF JAPAN

IR TR *"'/"—:-' ,
Compact Linear Collider (CUC) o >

N 395 GeV - 11,4 km (CLIC0) ré,

| sV zuu-:u:m

AOMORI

3 COOL COPPER COLLIDER

~/‘ FCC-ee

C msssasasesiosesss | .../
250/500 GeV \ i 240/365 GeV
250/550 GeV ‘
oo >Tev T aanunr’ /

CERN - FCC
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Next Generation Accelerators in Pursuit of
Compactness, Efficiency and Performance

S-band Accelerators mm-Wave/THz Accelerators
30 MeV/m GeV/m

Klystron Source mm-Wave/THz Sources
10s MW, us, ~3 GHz MW, ns, ~0.3 THz

A -
£ g‘.v’.‘l
g
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Rapid Development of THz Accelerator Technology
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) /e Growing International Community:
Acceleration l 9;8:1 III = ®&hr——— — .
v g2 : | K /, ‘ _— e e ;!-l [ ] )
= - = e/ _A,\* atiela,
g5 Photoinjectors I Zhao, ot al. PRX 8.2 (2018} 021051 - T
g',’ss ‘ M PQ Kealhofer, et al. Science 352.6284 (2016)
< 54 © §I g ,f = - . e
Y i ﬁ '{ Beam-Driven S —-—
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15 10 5 o 5 1

I
e A 3N $i
Nature Comm. 6 (2015) G GET S TZ

Currj, et al.

Deflectors andi7ospesss (2017). ¢
<1 fs Timino

M. Dehler, HG2017

Huang, W. R, et al., Natur
Scientific Rep. 5 (2015).

A
INFN
o RS

Toward

M. Dal Forno, et al., PRAB 1
(2016): 051302.

Externally Driven
Impacting Diverse Areas of Accelerator Technolog l;ﬁ;o GeV/m )/{\ccel.
» Precision Diagnostics and Beam Manipulation - <fs resolution : 7
« Ultrafast Electron Diffraction - 100 fC, <10 fs
« X-ray Generation — few to 10s pC, low emittance
« High Current, High Luminosity >>10s pC, bunch trains

43




What is the Real Scaling in
Frequency for Breakdown Physics?

« Demonstrate realizable THz
accelerating structure

* Power with stand-alone RF source — |
Experimental test underway at MIT
with 1 MW gyrotron oscillator

* Direct comparison w/ X-band , ity g
breakdown studies Accelerating Gradient

—~ 500 —~
Electric Field

916 .MV/m

— R _ _ _ _ . __ ( & = B
0. V\
R

Axis of Cylindrical Symmetry e 0 %6 3 %
3mm Time (ns)

Expanded >
View of Cavity »°

8

s

2

Accelerating Gradient (MeV/m
8

o

Need to Develop High-Power High-Frequency Sources for Practical Applications 44



Comparison of Assembly Techniques

« Assembly from
halves makes
RF
performance
insensitive to
defects

* Local features
significantly
different

45



Details of Isolated + Limited Brazed Assembly

o
= | =5

* New techniques and approaches needed for fabrication
« Successfully adapted split-cell approach to mm-Wave/THz range
» Braze foil tailored to cavity shape to control volume

~ @ fwrevd = K104 Signal A=SE2 C. Pearson
ER Mag= 16X doe e R g gqme Dite 26 A 2017 ﬁ

= A Spred - &
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Efficient Excitation of THz Accelerating Structures

* Avoid lossy waveguides with quasi- Schaub, Jawla
: ‘ Measured Amplitude
optical transport and couplers N
‘ ‘ 0

98,55 [3.880 in]
Y
—
(4]

il |l 25

Measured/back-propagaied  Free-space
field in the cut plane of the Gaussian beam
assembly coupled to structu

Versatile Topology Compatible with New Structures and Different Frequencies 47




Results from Quasi-Optical Transport Test

e An

 (Gaussian beam launcher used to test excitation Schaub, Jawla
« Matches design - m-mode 110.1 GHz, S{,=-25 dB, S,,~-40 dB
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First Quasi-Optical Coupling into Narrow-Band Accelerating Structure 48



Laser-Triggered Semiconductor Switch for Pulse Shaping
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and rapidly process away

Improving transport, coupling, diagnostics

Transmitted Pulse and Gradient
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Exploring New Frontiers of THz Acceleration with
Laser-Driven THz Sources 1 An

D AN

Single-Cycle THz Source Experiments Narrow-Band THz Source Experiments

« Experimental stepping stone » Developing structure for test with 100
» Successfully demonstrated <fs ps 100 kW source (w/ Minamide
streaking diagnostic at SLAC UED RIKEN) E field

* Pursuing structures to
demonstrate compression of
electron bunch down to a |
femtosecond : )

-, | X
<& - - - _.r.m.:._ _.g_ .%-.-&. m---4-- - 3D Printing
i Accelerating
— 1
Compression stage Structures at 300 GHz
Sample chamber and for Electro-Forming

Othman, Li. Hoffmann, Nanni streaking (timing tool) stage



THz streaking of femtosecond electron beams

el Ar>

3.1 MeV electrons, 50 um

timing jitter and
bunch length

* Develop a timing
tool for UED

* THz
manipulation/
acceleration of fs
€e-beams

R.K. Li et al., arXiv:1805.01979 (2018)

D b AN

every-shot
readout detector

Diffraction  THz resonator

sample or F o
quasi-single-  nozzle/jet R
cycle THz ! - ’/“:
! f
- /
Pump-probe e-beam centroid
elay depends on pump
2_(?_ probe delay
15 Slope or streaking strength

/ 4 mrad (353 pixels) = 0.49 ps,
or 1 pixel = 1.4 fs

y, (mrad)
o
<

—— 50 um slit
1_5_' ----2.5mm hole
P N 6.0 mm hole
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THz Compression Experiment in Progress —
Very Preliminary Results

*  Observing 3X Co
compression and timing ] : '
jitter reduction

« Stable performance
demonstrated

* Bunchlength~19 %
5 fs RMS

- 22000FTTT 1 T 20000 25000
e Jitter~12fs ; - -
Bunch Length Time of Arrival 20000} , 1eooor .|
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Othman, Snively, Li, Hoffmann, SLAC UED Team *®



Bridging the Gap Between Single-Cycle and Quasi-CW
Excitation for Optimized High-Field Performance

Laser-driven THz sources can produce high power pulses on 100s ps

timescale Single-cell 300 GHz structure 3D printed prototype

Pursuing pulse-compression o 3 cavities 100 kW
o ~600 MV/m

of electron-beam sources for ¢, 1 mw

very efficient nanosecond

pulses
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Nanosecond time scale
preserves high-shunt
impedance of structures




Conclusions
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« Accelerators are powerful tools for scientific discovery

- A great variety of parameters are achievable — species,
power, wavelength, repetition rate

« Technology is evolving rapidly to enable new capabilities

* Opportunity to work closely with detector community in
developing new / improved systems

e Questions?

95



