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Particle Detectors
Particle passing through a detector lose energy by ionization (charged particles) or by absorption (photons)

There exists many particle detectors: Gaz electrons multipliers, vacuum tube Photomultipliers (PM), Silicon 
Photomultiplier (SiPM), silicon strips, scintillator detectors,  CCD, hybrid pixel detectors, monolithic pixel 
detectors (MAPS)

Hybrid Detector Monolithic Detector

used in Particle Trackers Very good spatial and 
temporal resolution, low 
power consumption and 

low material budget
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Signal Formation: Shockley-Ramo Theorem

Q1

Q2

Q3Q4

Qn

• When a charge Q is created in a system containing N 
electrodes, it induces a counter-charge –Q on the N 
electrodes; keeping the system’s neutrality:
• 𝑄 = −(𝑄1 + 𝑄2+ 𝑄3+⋯ .+ 𝑄𝑁)

• Knowing the potentials (V) and the system’s 
geometry, we can calculate the electric field (E) at 
each point:

• 𝐸 = −∇𝑉
• The particle’s speed (𝑣) is thus known:

• Dans un semiconducteur: Ԧ𝑣 = 𝜇𝐸

• This theorem is valid for all detectors based on charge 
detection by electrodes.
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Shockley-Ramo Theorem

Q1

Q2

Q3Q4

Qn

• Intuitive, qualitative approach:
• A given electrode is more influenced if the 

charge is close to it.
• At all times: 𝑄 = −(𝑄1 + 𝑄2+ 𝑄3+⋯ .+ 𝑄𝑁)
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• We can calculate a capacitor value C between the 
charge Q and each electrode.

• Knowing that Q =C.V, we can write:

Δ𝑉 𝑃 =
𝑄1
𝐶1

=
𝑄2
𝐶2

=
𝑄3
𝐶3

= ⋯ =
𝑄𝑛
𝐶𝑛

=
𝑄1 + 𝑄2 + 𝑄3 +⋯+ 𝑄𝑛
𝐶1 + 𝐶2 + 𝐶3 +⋯+ 𝐶𝑛

=
𝑄

𝐶

• We can calculate the fraction of charge on a given 
electrode; also know as a Weighting Potential:

• 𝑊2 =
−𝑄2

−𝑄
=

𝐶2

𝐶1+𝐶2+𝐶3+⋯+𝐶𝑛

Shockley-Ramo Theorem
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𝑊2 =
−𝑄2
−𝑄

=
𝐶2

𝐶1 + 𝐶2 + 𝐶3 +⋯+ 𝐶𝑛

• We can calculate planes of ‘iso_counter-charge’ in a 
weighting potential, i. e. plans where the induced 
charge on a particular electrode is constant.

• If the moving charge crosses many equipotential 
planes, it induces a current on the electrode.

• Knowing the charge’s speed , the gradient of W, (also 
known as 𝐸𝑊 ), one can calculate the change rate of 
induced charge , i. e the current.:

𝐼 = −𝑄 𝑔𝑟𝑎𝑑 𝑊 . Ԧ𝑣 = 𝑄 𝐸𝑊. Ԧ𝑣

Shockley-Ramo Theorem
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• To calculate W of a given electrode (electrode 2 for example), on 
can apply a voltage variation dV2 (= 1V by  convention)on 
electrode 2, and a null potential at all other electrodes.

• The variation of the potential of point P is given by a voltage 
divider:

•
𝑑𝑉

𝑝

𝑑𝑉
2

=
𝐶2

𝐶1+𝐶2+𝐶3+⋯+𝐶𝑛
= 𝑊2

The weighting potential is function of the geometry of the
detector, it is sufficient to calculate it only one time for a given
detector and then use it to calculate the induced current for
any charge moving through the detector.

𝐼 = −𝑄 𝑔𝑟𝑎𝑑 𝑊 . Ԧ𝑣 = 𝑄 𝐸𝑊. Ԧ𝑣

Shockley-Ramo Theorem
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Current calculation in electrode

+Vbias

-q

+q

Vbias

0
L

x

𝐸

• Let’s examine the simple case of a semiconductor 
detector polarized by 2 metal electrodes..
• (we assume a very high resistivity semiconductor, with 

absence of charges in the detector volume)

• the electric 𝑓𝑖𝑒𝑙𝑑 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐸 = −
𝑉𝑏𝑖𝑎𝑠

𝐿
𝑢𝑥

• the potential increase linearly 𝑉 =
𝑉𝑏𝑖𝑎𝑠

𝐿
𝑥

• The weighting filed is obtained by applying a potential 
of 1V on the electrode of interest:

• ➔Weighting potential W =
1

𝐿
𝑥

• ➔Weighting field 𝐸𝑤 = −
1

𝐿
𝑢𝑥

• Charge speed : Ԧ𝑣 = μ𝐸
• We have all the elements to calculate the current:

x
−
𝑉𝑏𝑖𝑎𝑠
𝐿

𝐼 = −𝑄 𝑔𝑟𝑎𝑑 𝑊 . Ԧ𝑣 = 𝑄 𝐸𝑊. Ԧ𝑣
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Note that électrons and holes have 
different mobilities

➔ 𝐼 = 𝑞(𝜇𝑛 + 𝜇𝑝)
𝑉𝑏𝑖𝑎𝑠

𝐿

1

𝐿

Le temps de collecte de la charge est 

𝑡𝑐 =
𝐿

𝑣

𝑄𝑡𝑜𝑡 = න 𝐼𝑒 + 𝐼ℎ 𝑑𝑡 = 𝑞

If µn = µp If µn = 𝟐 µp If µn = 𝟑 µp

If charge is created at L/2

Current calculation in electrode
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Reminder: PN Junction

The depletion zone is more 
extended on the lower doped side

A PN junction is formed by a P-crystal doped with acceptor atoms 
(NA), in conctact with N-crystal doped with donnor atoms(ND).

Note: if a charge is created
outside of the depletion
zone, it can still be
collected by diffusion,
provided it reaches the
depletion zone before
recombination. However,
this a slow non-preferred
method of detection
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WD increase if VA increases, et if NA decreases, that’s why detectors 
are built on high resistivity substrate, and preferrably with junction 
that can support high reverse bias before breakdown.

If we suppose that one side is more doped that the other (ND>> NA ), 
which is generlly the case, then the depeletion width can be 
approximated to: 

Finally, the collection time is inversely proportional to the applied 
bias (VA>> Vbi)

In conclusion, a good detector has:
• High resistivity 
• Supports high reverse 

voltage

Reminder: PN Junction
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Hybrid Detectors

Currently used in the ATLAS ITK in LHC
• Hybrid detectors will also be used in the next upgrade

92 million pixels of 500 µm x 400 µm

Advantages of hybrid detectors:

Detector optimization independently from 
the readout ASIC

Very good radiation tolerance (especially 3D 
detectors)

Limits:

Long process, complex and expensive

Relatively high material budget

ASIC
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Monolithic Detectors

Detection occurs in the readout ASIC epitaxial layer. ➔
same ASIC for sensing and signal processing.

Advantages:

• Relatively less expensive

• Fast production using available commercial 
technologies

• Low sensor capacitance→ better performance, or 
same performance for less power

• Low material budget

Limits:

• Reverse bias limited by technology

• Less radiation tolerant than hybrid detectors
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DMAPS: Large Electrode Vs Small Electrode
Small electrode design (ex: TJ technology)Large electrode design (ex: LF technology)

• Fast charge collection by drift
• Good radiation tolerance

• Relatively big sensor capacitance (around 
150 fF for a pixel of 50 um x 150 um)

• Possible coupling between readout and 
sensor node

• Very small sensor capacitance (~3 𝑓𝐹)
• Convenient for small pixels

• Limited depletion zone, slow charge 
collection, partly by diffusion

• Not very good radiation tolerance
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Small Electrode 1st Optimization

• Adding a low-doped N layer that is 
completely depleted under bias, gives a 
big collection area by drift while 
maintaining small sensor capacitance.

Within CERN collaboration developing MAPS on TowerJazz technology

18



• Additional implants create lateral electric field for fast charge collection at pixel corners

Small Electrode 2nd Optimization
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Irradiation Results for TJ small electrode pixels
After 1015 neq/cm2Before

irradiation

2×2 pixels

After 1st optimization
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Towards the ‘Golden’ Detector?

Bent wafer scale (~27 𝑐𝑚 × 10 𝑐𝑚) stitched sensor, based on MAPS

Still in R&D for the ALICE 
detector upgrade

21

Almost no ‘dead’ areas, or 
overhead materials
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Typical Front-End Channel: 1- CSA

23

Iin

Cf

Cin

CSA

Detector

Vth

Shaper

Comp

S/H

Chare Sensitive Amplifier
Integrates the incoming charge on 

a feedback capacitor

Shaper
Shapes (Filters) the signal for an 

optimal Signal to Noise Ratio

Comparator to detect an event above 
a certain threshold

And/Or
a Sample and Hold circuit for an ADC 

further in the channel

Counter

ADC



Charge Amplification

The signal that we want to detect is a charge Q0, which is
created by an ionizing particle or a photon. Normally charge
creation is much faster than the amplifier bandwidth so we
can model it by a current spike 𝐼 𝑡 = 𝑄0𝛿 𝑡

The input impedance is generally the detector capacitance
Cin, whose value can range up to several hundreds of fF.

The voltage 𝑉𝑖𝑛 =
𝑄0

𝐶𝑖𝑛
is generally very small, and we have a

big incertitude about the intrinsic Cin.

A widely used method consists in integrating the incoming
charge on a low feedback capacitor Cf of know value,
producing a measurable Vout proportional to Q0. This
architecture is called a Charge Sensitive Amplifier (CSA),

Iin

Zf

Vout

Zin
ZL

-G

If

I1

Q0
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CSA Examples

Cascode Architecutre
Folded-Cascode Architecutre

LF Monopix chip

AC coupling, current feedback, Source Follower stage
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CSA Examples

ePixM for LCLSII
Krummenacher Architecture

Synchronous reset, 2 gain modes Leakage current compensation

26

There are many other architectures: differential, inverter based, …. 
with different reset mechanisms and leakage current compensation



How to model a simple CSA?

How to calculate the transfer 
function?

How to derive temporal behavior

How to choose design parameters 
gm, Cf , Rf , CL?

How to minimize noise?

How to have a design intuition?

Iin

RL

Vout

Zin
CL

-gm

If

I1

Cf

Rf

27



Laplace Transform - Reminder
A Laplace transform of function f(t) in a time domain, where t is the real number greater than or equal 
to zero, is given as F(s) 

𝐹 𝑠 = න
0

∞

𝑓 𝑡 𝑒−𝑠𝑡𝑑𝑡

Where s is a complex number in the frequency domain 𝑠 = 𝜎 + 𝑗𝜔

Main advantage: transforms complex differential equation to simple algebraic equations.
𝑑𝑓 𝑡

𝑑𝑡
՜
ℒ

sF(s)

Difference with Fourier Transform: Fourier transform is useful to study stable permanent systems 
(typically to find the harmonics of a periodic signal)

Laplace is more general, and can study any system (stable or unstable). If we reduce 𝑠 = 𝑗𝜔 we end 
up with Fourier transform. The real part 𝜎 introduces real exponentials in the solution.
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Laplace Transform Table
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Laplace Transform – Example RC Circuit

𝐼 𝑡 = 𝐶
𝑑𝑉𝑐 𝑡

𝑑𝑡
՜
ℒ
𝐼 𝑠 = 𝐶𝑠𝑉𝑐 𝑠 =

𝑉𝑐(𝑠)

𝑍𝑐
⇒ Zc =

1

sC
Vc=Vin-IR

𝑉𝑐
𝑉𝑖𝑛

=
1

1 + 𝑠𝑅𝐶

Assume that Vin(t) = U(t) that goes from 0 to 1 at t=0

➔ Vin(s) = 
1

𝑠

➔𝑉𝑐(𝑠) =
1

𝑠(1+𝑠𝑅𝐶)
=

1

𝑠
−

1
1

𝑅𝐶
+𝑠

➔𝑉𝑐 𝑡 = 1 − 𝑒−
𝑡

𝑅𝐶

Vin

𝜎

𝑗𝜔

𝑝 = −
1

𝑅𝐶
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Laplace Poles Diagram

𝜎 (𝑟𝑒𝑎𝑙)

𝑗𝜔 (𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦)

LHP  = stable system 
(decaying real exponential)

RHP  = unstable system (rising 
real exponential)

Pure imaginary poles (complex conjugate) = oscillator 
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Charge Sensitive Amplifier (CSA)

𝑉𝑜𝑢𝑡 = −𝐺 𝑉𝑖𝑛

𝐼𝑖𝑛 = 𝐼1 − 𝐼𝑓

➔
𝑉𝑜𝑢𝑡

𝐼𝑖𝑛
=

−𝐺 𝑍𝑖𝑛𝑍𝑓

𝑍𝑓+𝑍𝑖𝑛(𝐺+1)

We could reach the same result using the Miller Theorem

(This approach assumes an ideal amplifier)

Iin

Zf

Vout

Zin ZL

-G

If

I1

Iin
Vout

Zin ZL

-G

𝑍𝑓

𝐺 + 1

𝐺 𝑍𝑓

𝐺 + 1
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CSA: Case1 capacitive feedback 

Iin

Zf

Vout

Zin
ZL

-G

If

I1

𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

=
−𝐺 𝑍𝑖𝑛𝑍𝑓

𝑍𝑓 + 𝑍𝑖𝑛(𝐺 + 1)
=

−𝐺
1

𝑠𝐶𝑖𝑛

1
𝑠𝐶𝑓

1
𝑠𝐶𝑓

+
1

𝑠𝐶𝑖𝑛
(𝐺 + 1)

If G →∞ 𝑡ℎ𝑒𝑛
𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

= −
1

𝑠𝐶𝑓
Let’s consider an instantaneous injection of a charge Q0

𝐼 𝑡 = 𝑄0𝛿 𝑡 ՜ 𝐼 𝑠 = 𝑄0

𝑉𝑜𝑢𝑡 𝑠 = −
𝑄0
𝑠𝐶𝑓

՜ 𝑉𝑜𝑢𝑡 𝑡 = −
𝑄0
𝐶𝑓

U(t)

Instantaneous rise time, and amplitude maintained 
forever
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CSA: Case1 capacitive feedback 

• Cin = 100fF  Cf= 10fF  CL = 20fF

• G = 100k  Q = 10 000 e- over 1 ns

Vout = Q/Cf = 160 mV

Qin = 10 000 e-

34



What’s a high gain?
Sweep G from 1 to 105

For very low gains, Vout is 
dependent on G and Cin

In order for the output to 
be only dependant on Cf, 
the gain must be high so 
that:

𝐺 ≫
𝐶𝑖𝑛
𝐶𝑓

G Cf
Cin
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CSA: Case2 RC feedback

If G →∞ 𝑡ℎ𝑒𝑛
𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

= −𝑍𝑓 = −
𝑅𝑓

1 + 𝑠𝑅𝑓𝐶𝑓

𝑉𝑜𝑢𝑡 𝑠 = −
𝑅𝑓 𝑄0

1 + 𝑠𝑅𝑓𝐶𝑓 Iin

Rf

Vout

Zin
ZL

-G

If

I1

Cf

𝑉𝑜𝑢𝑡 𝑡 = −
𝑄0
𝐶𝑓

𝑒
−

𝑡
𝑅𝑓𝐶𝑓

T domain S domain

Instantaneous rise time (ideal amp), and discharge with a time constant RfCf
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Rf = 500k
RxC = 5 ns
Pole = 1/(2*pi*RC) = 31.8 MHz  

CSA: Case2 RC feedback
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CSA: Case2 RC feedback
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The effect of Rf : sweep 10 kΩ - 5 MΩ
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CSA: Case3 capacitive with Real Amp

Iin

RL

Vout

Zin
CL

-gm

If

I1

Cf
Open loop Transfer Function:
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= −
𝑔𝑚𝑅𝐿

1 + 𝑠 𝑅𝐿𝐶𝐿
= −𝐺 = −

𝐺0

1 +
𝑠
𝑃0

𝐶𝑙𝑜𝑠𝑒 𝑙𝑜𝑜𝑝 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

=
−𝐺 𝑍𝑖𝑛𝑍𝑓

𝑍𝑓 + 𝑍𝑖𝑛(𝐺 + 1)

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐺𝐶𝑓 ≫ 𝐶𝑖𝑛𝑤𝑒 𝑒𝑛𝑑 𝑢𝑝 𝑤𝑖𝑡ℎ:

𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

= −

1
𝑠𝐶𝑓

1 + 𝑠
𝐶𝐿(𝐶𝑖𝑛 + 𝐶𝑓)

𝑔𝑚𝐶𝑓

Final gain

Rising 
time 
constant

40
NB: Cin represents the sum of all input capacitances 
Cdet + Cgs + Cgd + …



CSA: Case3 capacitive with Real Amp

𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

= −

1
𝑠𝐶𝑓

1 + 𝑠
𝐶𝐿(𝐶𝑖𝑛 + 𝐶𝑓)

𝑔𝑚𝐶𝑓
In time domain:

𝑉𝑜𝑢𝑡 𝑡 = −
𝑄0
𝐶𝑓

(1 − 𝑒
_

𝑡 𝑔𝑚 𝐶𝑓
𝐶𝐿(𝐶𝑖𝑛+𝐶𝑓))
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CSA: Case4 RfCf with Real Amp

Iin

RL

Vout

Zin
CL

-gm

If

I1

Cf

Rf𝑊𝑒 𝑐𝑎𝑛 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝑡:

𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

−
𝑅𝑓

1 + 𝑠𝑅𝑓𝐶𝑓 + 𝑠2
𝑅𝑓𝐶𝑖𝑛𝐶𝐿
𝑔𝑚

If the system has a dominant pole (𝑅𝑓𝐶𝑓 ≫
𝐶𝑖𝑛𝐶𝐿

𝑔𝑚 𝐶𝑓
) then the 

TF can be written as:
𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

−
𝑅𝑓

(1 + 𝑠𝑅𝑓𝐶𝑓)(1 + 𝑠
𝐶𝑖𝑛𝐶𝐿
𝑔𝑚 𝐶𝑓

)

Feedback 
pole Output pole

𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

−
𝑅𝑓

(1 + 𝑠𝜏𝑓)(1 + 𝑠𝜏𝑟)

Rising time constantFalling time constant
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CSA: Case4 RfCf with Real Amp

𝑉𝑜𝑢𝑡
𝐼𝑖𝑛

−
𝑅𝑓

(1 + 𝑠𝑅𝑓𝐶𝑓)(1 + 𝑠
𝐶𝑖𝑛𝐶𝐿
𝑔𝑚 𝐶𝑓

)

In time domain:

𝑉𝑜𝑢𝑡 𝑡 = −
𝑄0 𝑅𝑓𝐶𝑓

𝑅𝑓𝐶𝑓
2 −

𝐶𝑖𝑛𝐶𝐿
𝑔𝑚

(𝑒
−

𝑡
𝑅𝑓𝐶𝑓 − 𝑒

−
𝑡 𝑔𝑚 𝐶𝑓
𝐶𝑖𝑛𝐶𝐿 )

It is already assumed that  RfCf ≫
𝐶𝑖𝑛𝐶𝐿

𝑔𝑚
then the TF 

approximates to :

𝑉𝑜𝑢𝑡 𝑡 = −
𝑄0
𝐶𝑓

(𝑒
_

𝑡
𝑅𝑓𝐶𝑓 − 𝑒

−
𝑡 𝑔𝑚 𝐶𝑓
𝐶𝑖𝑛𝐶𝐿 )

𝑉𝑜𝑢𝑡 𝑡 = −
𝑄0
𝐶𝑓

(𝑒
−

𝑡
𝜏𝑓 − 𝑒

−
𝑡
𝜏𝑟)

Iin

RL

Vout

Zin
CL

-gm

If

I1

Cf

Rf
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CSA: Case4 RfCf with Real Amp

𝑉𝑜𝑢𝑡 𝑡 = −
𝑄0
𝐶𝑓

(𝑒
−

𝑡
𝑅𝑓𝐶𝑓 − 𝑒

−
𝑡 𝑔𝑚 𝐶𝑓
𝐶𝑖𝑛𝐶𝐿 )

NB: The signal reaches max amplitude only if RfCf ≫
𝐶𝑖𝑛𝐶𝐿

𝑔𝑚

𝑉𝑜𝑢𝑡 𝑡 = −
𝑄0
𝐶𝑓

(𝑒
−

𝑡
𝜏𝑓 − 𝑒

−
𝑡
𝜏𝑟)

44



Stability of a closed loop system

Iin

RL

Vout

Zin
CL

-gm

If

I1

Cf

RfThe transfer function can be written under this form:

𝐻 =
𝐺0

1 + 𝑠
2𝜁
𝜔0

+
𝑠2

𝜔0
2

𝜔0 is called the natural frequency, and 𝜁 the damping 
factor. The denominator admits the following roots:

𝑃1,2 = −𝜁𝜔0 ± 𝜔0 𝜁2 − 1

• If 𝜁>1 then the roots are real and the system is 
over-damped (stable)

• If 0 < 𝜁 < 1 then the root are complex conjugate
and the system  exhibits damped oscillations 

• If 𝜁 = 0 then the system is pure oscillator (unstable)
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Case of complex conjugate poles

P1 = -82 + j 97 MHz
P2 = -82 – j97 MHz

Damped oscillation
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Stability Study by Simulation
Simulate open loop response, and check for phase margin. Good practice PM > 45°
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Typical Front-End Channel: 2- Shaper

48

Iin

Cf

Cin

CSA

Detector

Vth

Shaper

Comp

S/H

Chare Sensitive Amplifier
Integrates the incoming charge on 

a feedback capacitor

Shaper
Shapes (Filters) the signal for an 

optimal Signal to Noise Ratio

Comparator to detect an event above 
a certain threshold

And/Or
a Sample and Hold circuit for an ADC 

further in the channel

Counter

ADC



Shaper: CR-RC filter

49

Differentiator
= High pass filter

Integrator
= Low pass filter

Shaper = Band pass filter

𝜏𝑧 = 𝑅1𝐶1 𝜏𝑝 = 𝑅2𝐶2



Qualitative Approach

50

CSA output
(assuming 𝑅𝑓 = ∞)

Effect of 𝜏𝑧 while 𝜏𝑝 = constante Effect of 𝜏𝑝 while 𝜏𝑧 = constante 

Normally the choice 𝝉𝒛 = 𝝉𝒑 is the best 

compromise for signal amplitude within a  
fixed duration, and for filtering of high and 

low noise frequencies 



CR-RC Shaper Modeling
It can be demonstrated that the CR-RC transfer function is  
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Taking inverse Laplace Transform yields:   

𝑊ℎ𝑒𝑟𝑒 𝜏 = 𝜏𝑧 = 𝜏𝑝

The peaking time is Tpeak = 𝜏

And the maximum amplitude is: 

NB: The ratio of resistors and capacitors can 
introduce gain in addition to filtering



CR-RCN shaper

52

Introducing ‘N’ number of integrator stages yields a higher the order of the shaper

Higher order filters 
give faster return 
to baseline, useful 

for high-rate 
applications, at the 
expense of power 
and circuit surface



Complex Conjugate Shapers
It can be demonstrated that a perfect filter’s response approaches a Gaussian shape. 

This response can better be approximated using complex conjugate poles in the transfer function.

The math can be complex, so there are tables that give the poles positions as a function of the shaper 
order. (Poles are normalized to 𝜎➔ 𝑝 = 𝜎𝑠)

53

Theoretical Gaussian pulse shape



Outline

From Particle to Detected Charge
• Signal Formation: Shockley-Ramo Theroem

• Current calculation in electrode

• Hybrid Vs Monolithic detectors

From Charge to Amplified Analog Signal
• Typical Front-End Chain

• Charge Sensitive Amplifier

• Shaper

Noise and Design Optimization
• Thermal, shot, Flicker

• Series Vs Parallel noise

• Noise calculation and optimization
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Noise

Practically, the signal fluctuates around a mean
value for baseline and amplitude due to noise.
This limits the capability of the CSA for detecting
small charges, which must be distinguishable
from the noise.
In order to optimize our circuit, we need to
understand the origin of noise sources.

Noise ca be represented by a voltage source
whose power spectral density is noted 𝑆𝑣 𝑓

measured in
𝑉2

𝐻𝑧
. For brevity, the same quantity

can be noted in several references as 𝑣𝑛
2 𝑓 . The

average output power obtained after integration
over the BW is then noted < 𝑣2 >.
Noise can also be represented as current
sources.
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Noise calculation

Considering a noise spectral density of 

𝑣𝑛
2 at circuit input, whose unit is 𝑉2

𝐻𝑧

𝐻(𝑓) is the system’s transfer function

The average output noise is:

< 𝒗𝒐𝒖𝒕
𝟐 >= 𝟎׬

∞
𝒗𝒏
𝟐 . 𝑯(𝒇) 𝟐𝒅𝒇 [V2]

H(f)

Vin

Vout

𝑣𝑛
2

< 𝑣𝑜𝑢𝑡
2 >
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Noise Sources: 1- Thermal Noise
One of the primary noise sources in electronic circuits is due 
to the thermal agitation of charge carriers in conductors. 

Resistor: In a resistor of value R, the thermal noise :

• 𝑣𝑛
2 = 4𝑘𝐵𝑇𝑅 or 𝑖𝑛

2 =
4𝑘𝐵𝑇

𝑅

MOS transistor: In a transistor thermal noise is given by

• 𝑣𝑛
2 =

4𝛾𝑘𝐵𝑇

𝑔𝑚
or 𝑖𝑛

2 = 4𝛾𝑘𝐵𝑇𝑔𝑚

• γ =
2

3
for strong inversion and 1

2
for weak inversion

𝑣𝑛
2

𝑅

𝑖𝑛
2 𝑅

noiseless

noiseless

𝑣𝑛
2

𝑖𝑛
2
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Noise Sources: Shot noise
stems from the fact that the electrical current is quantized in fundamental packets, the electrons, each 

having a charge q and it is present, for instance, when a photo-current is generated by an incident beam 

of light or when a potential barrier needs to be crossed, like in diodes. 

If the leakage current through a diode is 𝐼𝑙𝑒𝑎𝑘then the shot noise is.

𝑖𝑛
2 = 2𝑞𝐼𝑙𝑒𝑎𝑘

𝑣𝑛
2

𝑓

Both thermal noise and shot noise are considered White Noise, that is their power spectral density is 
constant for all frequencies
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Flicker noise

Flicker noise or 1/ f noise is due to traps located at Si-SiO2 interface, that can temporarily capture and 

then release the charge carriers.

There are different models for Flicker noise:

𝑣𝑛𝑓
2 =

𝐾𝑓𝑏

𝐶𝑜𝑥
2 𝑊𝐿

1

𝑓

Or

𝑣𝑛𝑓
2 =

𝐾𝑓

𝐶𝑜𝑥𝑊𝐿

1

𝑓𝛼
𝑤𝑖𝑡ℎ 1.3 > 𝛼 > 0.8
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Normally the resolution of the front-end is limited by the noise from the input MOSFET 

Series Vs Parallel noise

60

We see that, when referred to the input, the noise can be represented either by voltage sources connected in 
series with the input or by current sources connected in parallel as they are different in nature. 
• Voltage sources e.g. input MOS thermal noise, 1/f noise. They are directly applied to input of amplifier and 

are generally reduced as you reduce the amplifier bandwidth (i.e. increase peaking time). 
• Current sources e.g. : leakage current, feedback circuitry noise current. These currents are integrated on Cin

(like input charge) and increase as the integration window increases (increase with slow peaking time).
• Noise optimization consists in reducing the overall noise of the system



By calculations or simulations, we can optimize the peaking time in order to have a minimum ENC for the system

Series Vs Parallel noise: Example
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Peaking time = 50 ns
ENC =275 e-rms

Peaking time = 1.8 us
ENC = 67 e-rms



Series Vs Parallel noise: calculation
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Since the transfer function 𝐻 𝑗𝜔 is calculated for an input current, we can directly use it to calculate the 
output noise due to current noise sources.

The voltage noise sources can be treated as current using the Norton equivalence: (𝐼𝑒𝑞)
2 =

𝑉𝑖𝑛

𝑍𝑖𝑛_𝑒𝑞

2

By assuming a total series and parallel unilateral noise spectral densities of Svn and Sin respectfully, then the total 
output noise N is: 

𝑁2 =
1

2𝜋
න
0

∞

𝑆𝑖𝑛 𝐻 𝑗𝜔 2 + 𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓
2
𝑠2𝑆𝑣𝑛 𝐻 𝑗𝜔 2 𝑑𝜔



The Equivalent Noise Charge is the input charge that generates a S/N ratio at the output equal to 1

Equivalent Noise Charge

Assuming that the front-end implements a time invariant filter with overall impulse response h(t). If the input charge 
is  𝑄0 𝜕 𝑡 . Then the output response is Vout (t) = 𝑄0 𝜕 𝑡 ∗ h t = 𝑄0ℎ 𝑡 which admits a maximum at t=t0
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𝑁2 =
1

2𝜋
න
0

∞

𝑆𝑖𝑛 𝐻 𝑗𝜔
2
+ 𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓

2
𝑠2𝑆𝑣𝑛 𝐻 𝑗𝜔

2
𝑑 𝜔

𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑆 = 𝑉𝑜𝑢𝑡 𝑡0 = 𝑄 ቚℎ 𝑡
𝑚𝑎𝑥

= 𝑉𝑜𝑢𝑡_𝑚𝑎𝑥

We have calculated that the output noise is:

Thus the SNR is: 𝑆

𝑁

2
=

𝑄2 ȁℎ(𝑡) 𝑚𝑎𝑥
2

1

2𝜋
0׬
∞

𝑆𝑖𝑛 𝐻(𝑗𝜔) 2+ 𝐶𝑖𝑛+𝐶𝑔+𝐶𝑓
2
𝜔2𝑆𝑣𝑛 𝐻(𝑗𝜔) 2 𝑑𝜔

= 1

𝑄2 = 𝐸𝑁𝐶2 =
1

2𝜋
0׬
∞

𝑆𝑖𝑛 𝐻(𝑗𝜔) 2+ 𝐶𝑖𝑛+𝐶𝑔+𝐶𝑓
2
𝜔2𝑆𝑣𝑛 𝐻(𝑗𝜔) 2 𝑑𝜔

ȁℎ(𝑡) 𝑚𝑎𝑥
2

(in Coulombs)
The charge that would 
make SNR = 1 is:



It can be demonstrated that there is a theoretical optimal filter function that minimize the ENC. Filters 
that approximate the optimal filter are called shapers. Let’s assume first the case of a shaperless CSA. It 
can be demonstrated solving the ENC formula that: 

Equivalent Noise Charge – Shaperless case
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𝐸𝑁𝐶2 = 𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓
2 𝑆𝑤
4𝜏𝑟

+ 𝐴ƒ ln
𝜏𝑓

𝜏𝑟
+
𝑆𝑝
4
𝜏𝑓

𝐶𝑔 = 𝐶𝑜𝑥𝑊𝐿, 𝑆𝑤 =
4𝑘𝑇γ

𝑔𝑚
, 𝐴ƒ =

𝐾ƒ

𝐶𝑜𝑥𝑊𝐿
, 𝑆𝑝 =

4𝑘𝑇

𝑅𝑓
+ 2𝑞𝐼𝑙𝑒𝑎𝑘

Using a classical model (only approximation in deep technologies)

𝜏𝑟 =
𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓 𝐶𝐿

𝑔𝑚𝐶𝑓

𝜏𝑓 = 𝑅𝑓 𝐶𝑓

And knowing that



Let’s first assume first the case of a shaperless CSA. 

Equivalent Noise Charge – Shaperless case

65

𝑬𝑵𝑪𝟐 = 𝑪𝒊𝒏 + 𝑪𝒈 + 𝑪𝒇
𝟐 𝑺𝒘
𝟒𝝉𝒓

+ 𝑨ƒ 𝐥𝐧
𝝉𝒇

𝝉𝒓
+
𝑺𝒑
𝟒
𝝉𝒇

𝐶𝑔 = 𝐶𝑜𝑥𝑊𝐿, 𝑆𝑤 =
4𝑘𝑇γ

𝑔𝑚
, 𝐴ƒ =

𝐾ƒ

𝐶𝑜𝑥𝑊𝐿
, 𝑆𝑝 =

4𝑘𝑇

𝑅𝑓
+ 2𝑞𝐼𝑙𝑒𝑎𝑘

Using a classical model (only approximation in deep technologies)

𝜏𝑟 =
𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓 𝐶𝐿

𝑔𝑚𝐶𝑓
𝜏𝑓 = 𝑅𝑓 𝐶𝑓

And knowing that

We’ve already seen that the transfer function of a CSA with RC feedback can be modeled as:

𝐻(𝑠) = −
𝑅𝑓

(1 + 𝑠𝜏𝑓)(1 + 𝑠𝜏𝑟)

By integrating the different noise sources’ spectral densities over all frequencies, we can demonstrate that:



The ENC is thus expressed as:

Equivalent Noise Charge – Shaperless case

66

In this case, one could note that:
• MOS thermal noise is not reduced by increasing gm
• Parallel noise is not reduced by increasing Rf
• Flicker is reduced by increasing the transistor area WL
• Overall noise is reduced by reducing Cin , Cf

𝐸𝑁𝐶2 = 𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓
2 γ𝑘𝑇𝐶𝑓

𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓 𝐶𝐿
+

𝐾ƒ

𝐶𝑜𝑥𝑊𝐿
ln

𝑅𝑓 𝐶𝑓
2𝑔𝑚

𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓 𝐶𝐿
+

4𝑘𝑇
𝑅𝑓

+ 2𝑞𝐼𝑙𝑒𝑎𝑘

4
𝑅𝑓 𝐶𝑓



Equivalent Noise Charge – with Shapers
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𝐸𝑁𝐶2 =
𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓

2
𝑆𝑤 0׬

∞
𝜏𝐻 𝑗𝜔𝜏 2𝜔2𝑑𝜔 + 𝐴ƒ2𝜋 0׬

∞
𝜏𝐻 𝑗𝜔𝜏 2𝜔𝑑𝜔

2𝜋 ⋅ ȁℎ Τ𝑡 𝜏 𝑚𝑎𝑥
2 +

𝑆𝑖𝑛 0׬
∞
𝜏𝐻 𝑗𝜔𝜏 2𝑑𝜔

2𝜋 ⋅ ȁℎ Τ𝑡 𝜏 𝑚𝑎𝑥
2

When shaping filters are used, we can generalize this equation: 

𝑄2 = 𝐸𝑁𝐶2 =
1

2𝜋
0׬
∞

𝑆𝑖𝑛 𝐻(𝑗𝜔) 2+ 𝐶𝑖𝑛+𝐶𝑔+𝐶𝑓
2
𝜔2𝑆𝑣𝑛 𝐻(𝑗𝜔) 2 𝑑𝜔

ȁℎ(𝑡) 𝑚𝑎𝑥
2

Let’s consider a generic fliter function, characterized by shaping time constant 𝜏, it is convenient to represent it as:

ℎ
𝑡

𝜏

𝐿𝑎𝑝𝑙𝑎𝑐𝑒
𝜏. 𝐻(𝜏𝑠)

In this case the peaking time, the max value,… are normalized and generic for any 𝜏

Now Introducing the typical spectral densities previously discussed, the ENC is calculated as: 



Equivalent Noise Charge – with Shapers

Thus:

68

𝐸𝑁𝐶2 =
𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓

2
𝑆𝑤 0׬

∞
𝜏𝐻 𝑗𝜔𝜏 2𝜔2𝑑𝜔 + 𝐴ƒ2𝜋 0׬

∞
𝜏𝐻 𝑗𝜔𝜏 2𝜔𝑑𝜔

2𝜋 ⋅ ȁℎ Τ𝑡 𝜏 𝑚𝑎𝑥
2 +

𝑆𝑖𝑛 0׬
∞
𝜏𝐻 𝑗𝜔𝜏 2𝑑𝜔

2𝜋 ⋅ ȁℎ Τ𝑡 𝜏 𝑚𝑎𝑥
2

𝐸𝑁𝐶2 = 𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓
2 𝑆𝑤
𝜏𝑝

𝑎𝑤 + 𝐴ƒ2𝜋𝑎ƒ + 𝑆𝑝𝜏𝑝𝑎𝑝

2

max

0

2

p2

max

0

2

ƒ2

max

0

22

w
)/t(h2

dx)x(H

a,
)/t(h2

xdx)x(H

a,
)/t(h2

dxx)x(H

a


=


=


=




Where aw, af and ap are constants that depend on the characteristic of the filter



Equivalent Noise Charge – with Shapers
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𝐸𝑁𝐶2 = 𝐶𝑖𝑛 + 𝐶𝑔 + 𝐶𝑓
2 𝑆𝑤
𝜏𝑝

𝑎𝑤 + 𝐴ƒ2𝜋𝑎ƒ + 𝑆𝑝𝜏𝑎𝑝

2

max

0

2

p2

max

0

2

ƒ2

max

0

22

w
)/t(h2

dx)x(H

a,
)/t(h2

xdx)x(H

a,
)/t(h2

dxx)x(H

a


=


=


=




Filter Shape aw aƒ ap w /p 

Triang.  1 0.44 0.33 2 

RU-2 0.92 0.59 0.92 7.66 

RU-3 0.82 0.54 0.66 5.04 

RU-4 0.85 0.53 0.57 4.17 

RU-5 0.89 0.52 0.52 3.73 

RU-6 0.92 0.52 0.48 3.46 

RU-7 
0 1 2 3 4 5 6 7 8 9 10

0

1

7
th

2
nd

 

 

 0.94 0.51 0.46 3.27 

CU-2 0.93 0.59 0.88 6.31 

CU-3 0.85 0.54 0.61 3.92 

CU-4 0.91 0.53 0.51 3.16 

CU-5 0.96 0.52 0.46 2.84 

CU-6 1.01 0.52 0.42 2.66 

CU-7 
0 1 2 3 4 5 6 7 8 9 10

0

1

7
th

2
nd

 

 

 1.04 0.51 0.40 2.55 

RB-2 1.03 0.75 1.01 16.6 

RB-3 1.11 0.77 0.76 9.87 

RB-4 1.30 0.81 0.66 7.68 

RB-5 1.47 0.84 0.62 6.60 

RB-6 1.61 0.87 0.59 5.94 

RB-7 
0 2 4 6 8 10 12 14 16 18 20

-1

0

1

7
th

2
nd

 

 

 1.74 0.89 0.57 5.53 

CB-2 1.08 0.79 1.02 12.9 

CB-3 1.27 0.86 0.76 7.29 

CB-4 1.58 0.93 0.67 5.60 

CB-5 1.86 0.98 0.63 4.81 

CB-6 2.11 1.02 0.59 4.37 

CB-7 
0 2 4 6 8 10 12 14 16 18 20

-1

0

1

7
th

2
nd

 

 

 2.31 1.06 0.58 4.11 

 

In the table, the normalized coefficients for some
commonly adopted time invariant filters are reported,
along with the ratio between the pulse width τw,
calculated from 1% to 1% of the curve, and the peaking
time tp, calculated from 1% to the peak)

R=Real Pole, C=Complex Pole, U=Unipolar, B=Bipolar



Using a classical model (only approximation in deep technologies )

Equivalent Noise Charge – with Shapers
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𝐶𝑔 = 𝐶𝑜𝑥𝑊𝐿, 𝑆𝑤 =
4γ𝑘𝑇

𝑔𝑚
, 𝐴ƒ =

𝐾ƒ

𝐶𝑜𝑥𝑊𝐿
, 𝑆𝑝 =

4𝑘𝑇

𝑅𝑓
+ 2𝑞𝐼𝑙𝑒𝑎𝑘

𝑬𝑵𝑪𝟐 = 𝑪𝒊𝒏 + 𝑪𝒐𝒙𝑾𝑳+ 𝑪𝒇
𝟐 𝟏

𝝉

𝟒𝜸𝒌𝑻

𝒈𝒎
𝒂𝒘 + 𝟐𝝅

𝑲ƒ

𝑪𝒐𝒙𝑾𝑳
𝒂𝒇 +

𝟒𝒌𝑻

𝑹𝒇
+ 𝟐𝒒𝑰𝒍𝒆𝒂𝒌 𝝉𝒂𝒑

In this case, one could note that:

• Series and parallel noise are weighted inversely WRT 𝝉
• MOS thermal noise is reduced by increasing gm
• Parallel noise is reduced by increasing Rf

• Flicker is reduced by increasing the transistor area WL
• Overall noise is reduced by reducing Cin , Cf

While optimizing for noise, one must keep an eye on other 
specifications, like gain, speed, count rate, maximum area, power, etc



Conclusion

• In a hybrid or monolithic detector, detected particles create charges in the semiconductor by ionization or 

absorption.

• These charges move under the effect of the electric field in the depleted volume and induce a current in 

the electrode according to Shockley-Ramo Theorem.

• The signal is amplified by a Charge Sensitive Amplifier, where the input charge is integrated on a feedback 

capacitor.

• Shapers are used to optimize the signal shape to maximize the Signal to Noise Ratio.

• There exists several types of noise sources (thermal, shot, Flicker) which could be represented in a series or 

parallel configuration at the input.

• Theoretical modeling of CSA helps understand the key factors to optimize speed, noise, surface, power 

consumption,…

• Optimization with and without shaper yields different conclusions regarding noise reduction factors.

• Simulation is needed to tune and optimize the circuit with respect to a particular design technology.
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Thank You For Your Attention!
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