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Long Diff and Differentiability

* Have been going piece by piece through
the code to find where gradients break

e Forlong_diff — notable spot is
truncated exponential (used for current
model)

e Sharp mask for x < 0 => poorly

behaved gradients

e Xx-axis ~ time t when we evaluate
current

e to = time of arrival at anode

* Induced current ~exponential fall
off after arrival (t > to)

e t <tono current (hasn’t arrived yet)

e Try: softening a bit with a sigmoid
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Example (and
zoom) for sigmoid
with growth rate 70
(sigmoid(70*x)) vs
the hard cutoff
mask
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Long Diff and Differentiability
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e Loss curves masking with le—6
Singid(X*70), with A —— Sigmoid
. . 0 - 4 .
-1e3*gradient shown in arrows N Nominal
for each point 51 .

e Sigmoid (blue) smoother,
gradients pointed in a
reasonable direction
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Long Diff and Differentiability
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* |ncreasing sigmoid sharpness le—e 10 Segments, Nominal w/ Double Tensors
(X*1000) in blue —— Sigmoid (x*1000)
* Approaches sharp mask 6 1 a —— Nominal
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e Gradients still seem reasonable,
but curve is bumpier
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* |deas (discussions with Daniel,

Youssef):

* Optimize with smoothed sim, tune
sigmoid width to approach sharp
cutoff as training progresses
* To check: if compare smoothed

to “sharp” sim, what does loss
like like

N
1

MSE Loss (ADC counts)

=
1

0.75 080 085 090 095 1.00 1.05 1.10
Normalized long_diff



Other Parameters

e Noticed this in long_diff, but
impact seen for other
parameter gradients
e tran_diff shown on right —

only two track segments as
a test

e Gradients much more
sensible with sigmoid mask
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Conclusions

e Things like arange break gradient flow
e But even with an intact computational graph, gradients can be nasty!

e To check:

* 1d loss surfaces for eField, lifetime, Ab, kb, MeVToElectrons, and now long_diff look
~reasonable in a noiseless case (plots forthcoming, have seen some examples from
Yifan)

* Need to look more at: vdrift, tran_diff

* Impact of these sharpness effects vs coverage/statistics
e How do we tune smoothness vs accuracy?
e Once 1d noiseless look ok

* Impact of readout noise
e Come back to multi-parameter fits



