

Test and qualification of the UDC: a 10 GSa/s, 16 channel digitizer system on a chip for fast plasma imaging applications

Isar Mostafanezhad Founder and CEO <u>isar@naluscientific.com</u> Ulitimia 2023 - SLAC

Acknowledgements: US DOE, UCSC, UH, Sandia

Work partially funded under DOE DE-SC0019790, DE-SC0021785 SBIR awards.

ABOUT NALU SCIENTIFIC

Agile Small Business in Honolulu, Hawai'i

Located at the Manoa Innovation Center near U. of Hawaii

20 staff members: 7 PhDs, 5 MSc, 8 BSc

Access to advanced design tools

Rapid design, prototyping and testing

Technical Team:

<u>Microelectronics</u> Analog + digital System-on-Chip (SoC)

<u>Hardware</u> Complex multi-layer PCBs

<u>Firmware</u> FPGAs, CPUs, Embedded

Software Data science, GUI, documentation

Scientific Plasma, medical, physicists, space

Exclusive Distributor Agreement for North America

Sales of ASICs, eval boards Enhanced OEM opportunities

Nalu = 'wave' in native Hawaiian language

WAVEFORM DIGITIZER SoCs For Precision Fast Timing Applications

1. Front-end Chips:

- Event based digitizer+DSP
- 4-32 channel scope on chip
- 1-15 Gsa/s, 12 bit res.
- Low SWaP-C
- User friendly: FW/SW tools

2. Integration:

- SiPM
- PMT
- LAPPD
- Detector arrays

3. Applications:

- NP/HEP experiments
- Astro particle physics
- Beam Diagnostics
- Plasma/fusion diagnostics
- Lidar
- PET imaging

Current ASIC Projects

Project	Sampling (GHz)	BW (GHz)	Buffer (Samples)	Number of Channels	Timing Res. (ps)	Available Date
ASoC	3-5	0.8	16k	4	35	Rev 3 avail
HDSoC	1-3	0.6	2k	64	80-120	Rev 1 avail
AARDVARC	8-14	2.2	16k	8	10	Rev 4 avail
AODS	1-2	1	8k	1-4	100-200	Rev 2 avail
UDC	8-10	1.5	4k	16	10	Rev 1 avail

- DOE Phase I/II SBIRs
- Low SWaP-C specialty digitizers for
 - Radiation detection
 - o Photonic sensors
 - Time of Flight (ToF)
 - Medical imaging
 - Space
 - Rad hard and harsh
 - Evaluation PCBs available
 - Extensive suite of software tools
- All microchips and tools available through CAEN Technologies USA

Eval PCB

Microchips

Motivation

- High-Energy-Density Laboratory Plasma (HEDLP) science: understanding high-density plasma general science and Inertial Fusion Energy
- Benefit of high-channel count solid-state detector arrays for plasma diagnostics.
- Available waveform digitizers @ speed: large physical size, high cost, and difficulty in integrating into existing facilities.
- Detector signals are fast analog pulses: < Ins rise time and duration of 50ps-Ins.
 - sampling at over 10GSa/s,
 - analog bandwidth of over 2.5GHz
 - o record length in the order of 100s of nanoseconds.
- Many channels (100s to 1000s)
 - Compact
 - Low cost

Ultrafast Pixel Array Camera (UPAC)

- UPAC 32: 32 channel 10 GSa/s compact DAQ based on <u>PSEC4A</u>
- Applications:
 - Solid-state streak camera,
 - Ultrafast imaging array
 - Neutron time-of-flight spectrometer
- Under test at Sandia
- Next generation:
 - Must be based on commercially available chips: <u>UDC</u>
 - 100-400 channels
 - Same form factor

Quinn Looker, et al: The Ultrafast Pixel Array Camera System and its Applications in High Energy Density Physics Review of Scientific Instruments 93, 074702 (2022); https://doi.org/10.1063/5.0091824 (Editor's Pick)

UPAC Digitizer Chip (UDC) concept and design specs

- Custom asic to cover the requirements:
 Cannot use traditional continuous
 - Cannot use traditional continuous ultra-high-speed ADC due to power/density/cost requirements
 - power/density/cost requirements
 "On demand" digitization stores full
 waveform in analog form (using
 switched-capacitor (S-C) arrays and converts
 only after trigger ideal for "one-shot" or
 relatively low rate experiments
- General features
 - Digitization of 16 channels
 - Sampling rates up to 10 Gsps
 - Relatively mature technology (reasonable prototyping costs): standard 130 nm CMOS
 - Long recording length per channel (4096 samples)
 - On-chip digitization
 - Internal storage of full digitized signal
 - Simple serial interfaces for configuration and readout
 - Derived from chip (AARDVARC) on smaller channels and higher record length developed for HEP applications (proven components)

Parameter	UDC					
Channels	16					
Sampling Rate	Dual:					
ABW	1-2 GHz (under evaluation)					
Samples/channel	4096					
On-chip digital storage	Yes					
ADC bits (not ENOB)	10					
Die size	~6.4mm x ~4.5mm = 28.8 mm ²					
Package	QFN64 (9x9)					
Output IF	Serial or parallel, polled or streaming					
Trigger out	Yes					
Self Triggering	No					
Input amplifier/buffer	No					

Channel structure and operation

- Channel operation:
 - Sampling: continuously at 10GSa/s rate,
- Storing: keeping a buffer of 4096 samples;
- Triggering: stops sampling, and digitizes
- Transmitting: the data is packetized and sent via (selectable) parallel or serial interface.
- Channel architecture
- Sampling array: 128-cell S-C that continuously samples at 10GSa/s,
- Storage array: 4096 S-C array where samples are copied in groups of 64
- Timing generator providing all strobes for sampling and transfer
- Wilkinson ADC: composed of:
 - Comparator (in storage cells)
 - Ramp generator and counter (shared)
 - Converted sample registers (64)

UDC Floorplan and Size

- X values:
 - Xchan: ~1.5mm (x2)
 - Xdig = ~3.0 mm most space on SRAMs!
- Ydie = 4.3 mm
- Xdie = 6.2 mm
- Total area: 26.6mm²

XChan

Channel 0	00	01	08	09	Channel 8
Channel 1		01			Channel 9
Channel 2	02		10	11	Channel 10
Channel 3		03			Channel 11
Channel 4	04		12	13	Channel 12
Channel 5		05			Channel 13
Channel 6					Channel 14
Channel 7	06	07	14	15	Channel 15
T.Gen/DACs		<u> </u>			T.Gen/DACs

DC calibration - pedestals

- Due to the non idealities among the different sample circuits (especially comparator offsets), digitized values require voltage calibration:
- After calibration a residual of 1.19 ADC counts remains (in this example) Using slope from DAC sweep see later - average baseline subtraction yields ~0.84mV RMS

Raw read: pedestal variation of a single capture; common DC subtracted

Single subtraction: another capture subtracted from original capture

Average subtraction: average of remaining (19) captures subtracted

Pedestal statistics

Typical single channel pedestal distribution and standard deviation

Note that the average RMS error is less than **1.5 counts** - resulting in around **8.5 bits** accuracy in DC.

Channel timing evaluation

Multiple pulsed are generated to estimate timing accuracy:

- Interval between pulses is defined by passive delay.
- Interchannel and intra-channel timing between channels and/or different pulse used to estimate timing RMS without and with calibration.
- Average waveform collected by averaging 5ns region around 500 first waveforms (upsampled by factor of 100)
- Average waveform correlated with each capture and maximum correlation around waveform regions used to find a delay ch0 delay subtracted from comparison channel (ch1/4) to get inter-channel delay
- Channel pairs should low time jitter (A little over <u>10ps</u>)
- We expect these numbers to be confirmed or improved in all conditions after timing calibration

Example of sensor acquisition

Fast laser-excited photo-diode signal captured by the UDC microchip (red) and fast oscilloscope (Tektronix 2 GHz, 10 GSa/s, DPO 5204B oscilloscope) showing good match on the overall shape and rising edge of the pulse.

NSS-20-024 Wednesday, November 9, 2022 2:30pm

UDC v1 issues and plans for v2

UDC v1 was primarily designed for function hence some performance issues:

- Power Consumption:
 - 35mW/ch
 - Complete power consumption model is being developed.
- Bandwidth
 - Initial design for 2 GHz, but measured ~1GHz.
 - Input buffer, better packaging in V2
- Modulation effect on continuous waveforms
 - Freq. dependent amplitude modulation observed on pure tones.
 - Converging on an explanation and a fix for V2
- Switched-cap kick-back effect (well known)
 - Older samples are affecting new samples due to on-off switching on sampling array - Shows as a signal dependent step error
 - Solution: Add a buffer at chip input in V2
- ADC Code nonuniformity
 - Caused by crosstalk of clock signals
 - Better digital and mixed signal isolation in V2

UPAC96: Ultrafast Pixel Array Camera

Product Name: DSA E10-96

Product Description: 96 channel, 10 GSa/s digitizer, 10b

Dimensions: ~ 12" x 4" x 1"

Bandwidth: ~1.2 GHz

Interface: USB 3/UART

Integration: chip, FPGA, clock, regulators, comm, FW, SW

Software: GUI, script, Python, analysis

Sensor (separate): Fast xray, SiPMs, fast diodes

UPAC 96 PCB

UFL breakout

SiPM array

Designed and vertically integrated at Nalu Scientific

Under evaluation at Sandia

Main user: Fusion Energy Research at Sandia National Laboratory

Enclosure for harsh environments

Software and analysis

Funded by DOE Phase I/II SBIRs

WURP: Wideband Ultrafast Recorder for Plasma science

WURP 1k:

- ~1k pixels+readout in 10cm x 10cm x 3cm form factor
- UDC: 10 GSa/s, 4k sample depth per pixel (400 ns recor length), 130nm CMOS, 5x5mm die size
- Mini tile: 4x4 =16 pixels in 12mm x 12mm
- Full tile: 8 x 8 mini tiles installed on a passive ridge type backplane PCB
- Backplane: power, data, clock, trig
- WURP 1k-v: more clearance on mini-tile sides for vacuum sealing
- All standard COTS fabrication, bonding steps at reasonable cost.
- Feasibility study: Mini Tile design final
- Next steps
 - Fabricate mini tile
 - Design and fab backplane
 - Test

HPSoC: Fast Waveform Digitizer for Readout of Dense Sensor Arrays

- 10 GSa/s Waveform Acquisition for Dense AC-LGADs
- Feasibility study:
 - Designed and fabbed 65nm test chip
 - TIA tested
 - Digitizer under test
- Collaboration with UCSC

Parameter Specification

Title Channel no. 100+ (pitch 300-500 μm)

65nm CMOS 10 GSa/s 2 GHz

No. bits 10

Process

Sample rate

Bandwidth

Supply Voltage 1.0V (2.5V for digital I/O)

Timing accuracy

Front-End stage Embedded TIA
Buffer length/channel 256 samples
Power/channel <2mW

On-chip integration Sampling, Digitization, Calibration, Feature

Extraction, Data Fusion

Conclusions

- UDC chip functional and satisfying most specifications
 - Sampling Rate
 - Timing accuracy
 - Negligible leakage effects
 - Reliable readout through serial interface
 - Small packaging possible
- A few limitations and anomalous effects investigated
- Multichip operation on 96 channel board demonstrated
- Preliminary analysis of potential re-design for performance enhancements:
 - Power reduction mechanisms (transfer control, digital SRAM clock gating)
 - Linearity improvements (error, range)
 - o Input buffering for BW increase, kickback reduction.
 - Internal generation of all required clocks off single reference clock
 - o Added flexibility in control (programmable sample readout, self triggering)

Summary

Products:

- Digitizer microchips
- Hardware integration
- Firmware and software

Services:

- Custom chip/HW design
- Software and firmware design
- Custom readout system development
- Prototyping

• Expertise:

- Electronics engineering
- Radiation detection
- Integration and testing

Collaborations:

- National Labs/ FFRDCs
- Universities
- Large Scientific Experiments

SiPM Arrays

AC-LGAD readout

Diamond detector

