RadioFrequency Pixel (RFpix) Design Considerations for 65nm

Gary S. Varner SLAC 14-MAY-2022

Peter Orel

1

Motivation

- **1. Original studies in 130nm CMOS looked very promising**
- 2. <u>Right at the margin of what could be achieved in that process</u>
- 3. Subsequently have learned some limitations in earlier modeling, interest in 65nm process
- 1. P. Orel, P. Niknejadi, G.S. Varner, "Exploratory study of a novel low occupancy vertex detector architecture based on high precision timing for high luminosity particle colliders," *Nucl. Instr. Meth.* **A857** (2017) 31-41.
- 2. P. Orel, G.S. Varner, "Femtosecond Resolution Timing in Multi-GS/s Waveform Digitizing ASICs," *IEEE Trans. Nucl. Sci.* **64** (2017) 1950 1962.

1. Original motivation was to save a few M\$/year in storage for Belle II (as largest component of event size is DEPFET pixels)

2. A more generalized concept is to use sub-picosecond timing to exchange one (or more) of the spatial dimensions at the micron level for timing

What would it take?

3 key elements:

1) Avalanche sensor element

- 2) Transmission (delay) line
- 3) Waveform sampling ASIC

- Micron spatial pixel resolution (using timing)
- → Fast timing brings many benefits:
 - Minimal pile-up (fast clearing)
 - Improved event timing (direct T0 for TOF/TOP measurements)

1) Signal Generation – coincident Geiger mode-devices? LGADs?

Amplitude

- Mean time provides TOF (perhaps 10's of ps)
- Time difference provides position (sub-ps for micron-scale spatial)
- "initiator" circuit for clean signal launch

3) Waveform sampling electronics (limits)

1GHz analog bandwidth, 5GSa/s

Simulation includes detector response

Pushing into the femtosecond regime

Pushing sampling speed and analog bandwidth

0.3

0.35

0.6

0.5

Propagation speed [c]

0.55

0.7

0.65

130nm Target Specifications

Parameter	Minimum desired value
Sampling frequency (ASIC)	20 GHz
Bandwidth (Detector and ASIC)	3 GHz
Signal to Noise Ratio (Detector and ASIC)	58dB (V _{signal} =1 Volt)
Velocity of Propagation (Transmission Line/ strip line)	0.35c
Number of Bits of Resolution	9.4 bit

Getting to < 200fs very challenging, but a device with <=1ps (independent of aperture) interesting

To achieve these specs, SNR and ABW are critical

Example of a critical component

RFPix1 overall architecture

sampling pulse generation, clock divider (differential)

input transmission line (layer 8)

wires from sampling cell to storage cell

RFpix1 ASIC Design Summary

Key Design components verified

Work still needed on the digital control/address decoding

Moved on to other projects, consideration of other technology nodes

space for storage array timing and control

	Parameter	Desired value	Simulated value
112	Sampling period	$50 \ ps \ @20 \ GS/s$	$50 \ ps @20 \ GS/s$
n2	Analog bandwidth ^a	$\approx 3 GHz$	$\approx 3.56 \ GHz$
	Input referred noise ^b	$\leq 0.5 \ mV_{RMS}$	$\approx 1.05 \ mV_{RMS}$
	Added jitter per channel	$\approx 40 \ fs$	$\approx 29 \ fs$
	ENOB ^c	≥ 10	≈ 9.6
	Power consumption per channel ^b	40 mA	$41.71 \ mA$

^a The simulated value is the tracking bandwidth of the SCA.

^b The simulated value does not take into account the input buffer.

^c The simulated value does not take into account distortion.

Comparing with the 65nm technology node

- Sub-ps timing interesting on its own
- **RFPix is somewhat of a concept study**
 - However exchanging a spatial dimension (or more) for time, can have significant benefits in Giga-channel count systems
- Cost is an issue, however some key benefits:
 - Faster (20GSa/s was at limit for 130ns)
 - Can fit a lot more stuff (digital processing)
 - More radiation hard

Performance Parameter Space -- comparison

65nm technology transistor-level simulation (II)

Added jitter contribution

Scaling to 40GSa/s?

Dynamic range reduced ~20%

Higher density, direct clocking of sampling?

65nm technology functional MC to probe limits

 $4\pi\sigma_{\sigma}$

65nm technology functional MC to probe limits

Net contribution ~ sqrt(2) * singleLE

3.54ps

- However, have a lot of information on the leading edges (and pulses themselves)
- Can logically extend to more content-rich initiation signal (see Thursday talk)

Place where 65nm shines
 (lots of digital processing resources!)

RFPix2 65nm projections and ToDo

20

Summary

- Sub-ps timing interesting on its own
- Advancing to 65nm (or lower) further extends waveform sampling options to achieve this
- **RFPix is largely of a concept study**
 - However exchanging a spatial dimension (or many) for time, can have significant benefits in Giga-channel count systems
 - Roadmap to readout for next-generation detectors capable of producing timing of sub-ps resolution (or use <u>differential</u> <u>measurements</u> to mitigate jitter limits)

Backup Slides

Interest in exquisite space-time Resolution

In a number of communities (future particle/astroparticle detectors, PET medical imaging, etc.) a growing interest in detectors capable of operating at the pico-second resolution and μ m spatial resolution limit (for light 1 ps = 300 μ m)

Front-End Electronics

Fast signal collection x-ray detectors

Exploration of the space-time limit

-Sampling at high sampling rate and high bandwidth

-Resolve small distances

Current Goals: Spatial resolution of $10\mu m$ in z and $20\mu m$ in $r\phi$ In Silicon $10\mu m$ in z corresponds to timing resolution of about 100fs $20\mu m$ in $r\phi$ will depend on the SNR

Visualizing parameters for time resolution in z

Higher fidelity simulation

- Amplitude noise injection;
- Quantization with adjustable number of bits (N_{BITS}) ;
- Jitter injection;
- Adjustable sampling frequency;
- Adjustable signal frequency and bandwidth;
- Adjustable time window;
- Adjustable full scale dynamic range.

The generator output provides four vectors:

- Sampled amplitude vector (Samples);
- Sampler time base vector with jitter $(t_{SAMP.})$;
- Sampler time base vector without jitter $(t_{SAMP.} w/o \ jitter);$
- Signal time base vector (t_{SIGNAL}) .

Analog BW limitation – identify and improve

Bandwidth 20 2500 LowZ ideal 18 LowZ par LowZ load&par 16 50Z ideal 2000 50Z par 14 50Z load&par 12 1500 Bandwidth [GHz] Resistance [Ohms] 10 8 1000 6 4 X: 0.65 500 Y: 1.688 2 0 0.8 1.2 0 0.2 0.4 0.6 1 0 0 0.2 0.4 0.6 0.8 Vdc [V]

• BWworst≈1.7GHz @665mVdc @50Ω drive

• Ron=2.4k @665mVdc

Voltage [V]

w/h par

1.2

1

w par

AARDVARC (SoC Digital)

AARDVARC Parameter	Specification
Process node	130/65 nm
Channels	4/8
Sampling Rate	10-15GSa/s
Storage Samples/ch	32768
Analog BW	>2GHz
Dynamic Range	1.0 V
Time accuracy	<5 ps
Readout	Parallel/Fast Serial
ADC bits	12
Power/ch	100 mW

130nm ~5 x 5 mm

Constraint 1: Analog Bandwidth

Difficult to couple in Large BW (C is deadly)

Constraint 2: kTC Noise

Want small storage C, but...

Constraint 3: Leakage Current

Increase C or reduce conversion time << 1mV

Sample channel-channel variation $\sim fA \rightarrow nA$ leakage (250nm \rightarrow 130nm)

PSEC4: Sampling Analysis

Utilizing PSEC4's SCA as starting place -Adjustable Sampling rate between 4-15 GSPS -1.6 GHz bandwidth

Equivalent Circuit

34

Understanding waveform sampling limits

DAQ	f_{SIG}	Measured $\sigma_{T_{PER}}$	Simulated $\sigma_{T_{PER}}$
SCO1	3 GHz	1.78 ps	2.96 ps
SCO1	6 GHz	$2.28 \ ps$	3.03 ps
SCO2	3 GHz	$1.38 \ ps$	$1.42 \ ps$
SCO2	4 GHz	$1.68 \ ps$	$1.58 \ ps$
SCO3*	400 MHz	$5.68 \ ps$	$5.86 \ ps$
SCO3*	$500 \ MHz$	$4.27 \ ps$	$5.75 \ ps$

* Signal amplitude equal to 0.475 Vpp.

IEEE Trans. Nucl. Sci. 64 (2017) 1950-1962.

Detailed simulation model developed to allow exploration of phase space – first need to verify results

Underlying Technology

• Pipelined storage = array of T/H elements, with output buffering

Switched Capacitor Array Sampling

300MHz RF Sine [50mV amplitude]

Simulation Results: Bandwidth for worst case operating bias point

Whether the 1st switch is on or the last, Gain is the same

Simulation Results: Group Delay

Group Delay does vary depending which switch is on by ~25ps which puts a constraint on sampling time window

Simulation Results: Phase

• At higher frequencies Phase vs freq behavior is also different and depends on which switch is on

Simulation Results: Capacitance

Capacitance is 2.2 pF and does not dependent on which switch is on

PSEC4 Analysis: Single Sampling Cell

PSEC4 Analysis: Single Sampling Cell

Structure & Layout

Top view

Side view

Single Sampling Cell Coupling

- Driver circuit
- Switch with n-p FET pair
- Sampling capacitor
- Comparator as load

Switch & Sampling Capacitor Equivalent Circuit

- Check Csampling capacitance
- Identify Ron and Roff

Sampling Capacitor Spread

Monte Carlo with process variation and mismatches shows a discrepancy between Csampling Schematic (13.5 fF) and Measured mean (20.27 fF).

The Spread is about 1.9fF which makes the Capacitor tolerance at about 9.3%

Num. of Samp.	MEAN	STD	MIN	ΜΑΧ
1000	20.27 fF	1.89 fF	14.86 fF	26.24 fF

Pass Transistor (Switch) Resistance

• The PFET and NFET are not matched and Ron varies considerably

Frequency Analysis

Performance: S(Z)-parameter

The input impedance is high and it is capacitive.

Input coupling analysis

The transfer function parts:

- input parasitic capacitance of the transistor plus capacitance of the transmission line section.
- Series resistance of the transistor channel (Rds)
- Output capacitance which is formed of the parasitic capacitance of the transistor, sampling capacitor and load capacitance

Capacitance	Value [fF]
Cin_open	8fF
Csw_out	10fF
Csamp	20.3fF
Cload	13fF

Overall optimization/interplay

Small signal frequency response

- BWworst≈2.3GHz @665mVdc @LowZ drive
- BWworst≈1.7GHz @665mVdc @50Ω drive

• Isolation is over 60dB over all parameter space

Small signal phase analysis

→ Large group delay variation points to large distortion

Large signal response (I)

Full dynamic range at low • frequency, compression appears when reaching the voltage threshold of the PN junctions at the drain/substrate barrier.

Gain compression at lower and higher amplitudes

3AIN compression at 1GHz [dB]

-4

Large signal analysis (II)

High frequency gain compression & distortion

Three region of operation:

•

•

Low distortion & High compression

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

650mVdc

[dB] at (

ပိ

Understanding signal response

Understanding signal response

Moderate distortion & Moderate compression

Resistance of the channel is varying

 > The bandwidth at instantaneous values of
 the incident voltage waveform is different

-> In frequency domain this gives rise to higher harmonics, which interfere constructively hence increasing the overall signal amplitude but also increases distortion

Harmonic decomposition

- Constructive interference of odd harmonics and destructive interference of even harmonics at the peaks
- Constructive interference of second and third harmonics at zero crossing

Frequency domain decomposition

Noise and Distortion

 Noise dominated by the ON resistance of the channel + Total noise is around 0.29mV \pm 0.01 mV

Noise, distortion and dynamic range

Signal to Noise Ratio at full scale input (1Vin)

• SNR is around 61.7dB \pm 0.3 dB

Distortion analysis

 Most of the distortion comes from the Ron variation over the input voltage range

Summary – Requirements comparison

Parameter	Measured (worst case)	Requirement
Bandwidth	1.7GHz @665Vdc @50Ω	3GHz
SNR	61.7 dB	58dB
ENOB	9.8 bits (small region)	9.4 bits

Things to improve:

- Reduce Ron variance over the dynamic range to reduce distortion and increase the ENOB
- Timebase generator stability
- Bandwidth improvement:
 - Reduce Cin or reshape the channel to increase the bandwidth (first pole)
 - Reduce Ron overall value to increase the bandwidth (second pole)
- In summary:
 - Increase bandwidth
 - Need fast detector
- Use differential configuration to reduce pedestal error and increase noise coupling and crosstalk immunity

Design Choices

• Input coupling

- Differential versus single-ended input
- Needed analog bandwidth
- Gain needed?

Sampling Options

- On-chip PLL/DLL
- External DLL
- Analog transfer vs. interrogate in situ

• ADC and readout options

- Sequential output select vs. random access
- On-chip vs. off-chip ADC
- Serial, parallel, massively parallel

Many variants have been explored...

ENOB at 600mVdc