# Bayesian inference and deterministic anisotropy for molecular geometry retrieval in gas-phase diffraction experiments

#### ULiTiMA: 3/13/2023

Kareem Hegazy, Varun Makhija, Phil Bucksbaum, Jeff Corbett, James Cryan, Nick Hartmann, Markus Ilchen, Keith Jobe, Renkai Li, Igor Makasyuk, Xiaozhe Shen, Xijie Wang, Stephen Weathersby, Jie Yang, **Ryan Coffee** 







We introduce a mathematically rigorous data driven approach to retrieve molecular frame geometries while reducing simulation requirements.

- 1. Current approaches and the curse of dimensionality
- 2. Anisotropy reveals the molecular frame (MF)
- 3. Bayesian Inference
  - a. Overcoming the curse of dimensionality
  - b. Metropolis Hastings Algorithm
  - c. Results
- 4. Future Application to Excited State Geometric Dynamics
- 5. Summary

### Current Molecular Geometry Retrieval Methods Traditional and New Methods

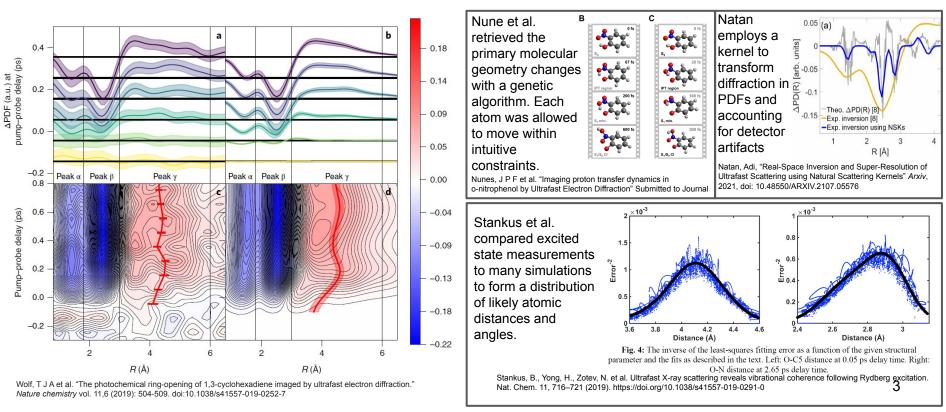


#### **Traditional Method**

- Pair distribution function (PDF)
- Compare PDF, or diffraction, with theory to interpret the molecular geometry transience

#### **Data Focused/Driven Method**

- Use ML to optimize primary features
- Employ kernel transformations from diffraction to PDF
- Use many simulated geometries to statistically improve precision



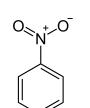
# Current Molecular Geometry Retrieval Methods Curse of Dimensionality



The number of geometries to sample (S) grows exponentially, for a grid search

$$S = R^{3N-6}$$

R: Number of sample points per dimension N: Number of atoms V: Percent of volume

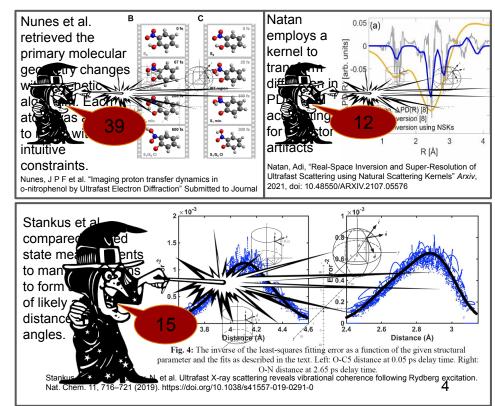


**Nitrobenzene:** 21 dimensions (ignoring H)

| S                | R    |  |
|------------------|------|--|
| 10 <sup>6</sup>  | 1.93 |  |
| 10 <sup>9</sup>  | 2.68 |  |
| 10 <sup>21</sup> | 10   |  |

#### **Data Focused/Driven Method**

- Use ML to optimize primary features
- Employ kernel transformations from diffraction to PDF
- Use many simulated geometries to statistically improve precision



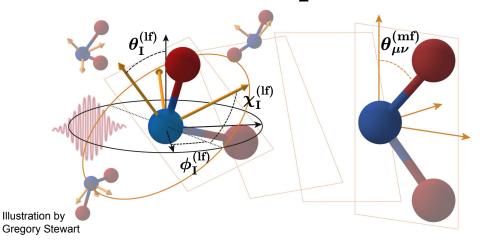
### **Anisotropy Reveals the Molecular Frame (MF)**

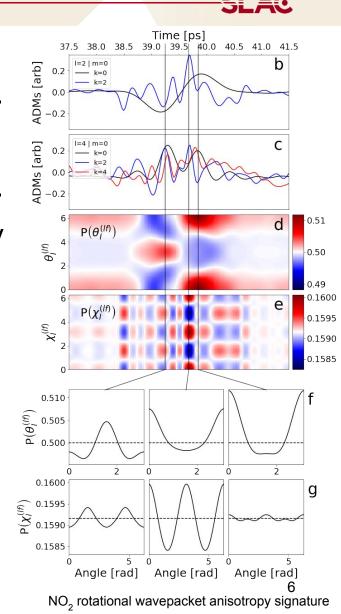
# **Anisotropy Reveals the Molecular Frame (MF)**

- Anisotropy provides constraints on molecular frame (MF) degrees of freedom.
- Combining many measurements (constraints) allows one to retrieve the MF.

#### Application in photo-electron spectroscopy

- V. Makhija, et. al., (2016), arXiv:1611.06476 [physics.atom-ph]
- C. Marceau, et. al., Phys. Rev. Lett. 119, 083401 (2017)
- M. Gregory, et. al., (2020), arXiv:2012.04561 [physics.chem-ph]
- Use a stretched NO<sub>2</sub>: an asymmetric top

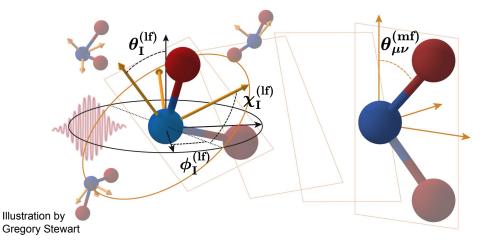




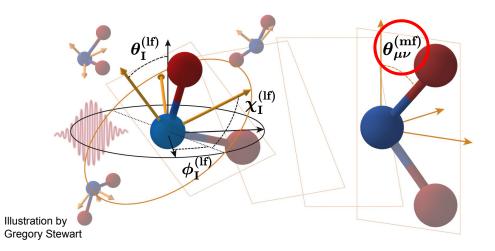
SLAC

$$\langle I(\mathbf{q}) \rangle(t) = \mathcal{I}\left(\sum_{\mu} |f_{\mu}^{*}(q)|^{2} + \sum_{\mu,\nu:\mu\neq\nu} \operatorname{Re}\left\{f_{\mu}(q)f_{\nu}^{*}(q)\sum_{l} i^{l}8\pi^{2}\sqrt{4\pi(2l+1)}\right\}$$
 Independent atom approximation 
$$\times \sum_{m,k} (-1)^{k-m} \underbrace{Y_{l}^{-m}\left(\theta_{q}^{(\mathrm{lf})}, \phi_{q}^{(\mathrm{lf})}\right)}_{\text{Lab Frame}} \langle \Psi(t) | \underbrace{D_{mk}^{l}\left(\phi_{\mathrm{I}}^{(\mathrm{lf})}, \theta_{\mathrm{I}}^{(\mathrm{lf})}, \chi_{\mathrm{I}}^{(\mathrm{lf})}\right)}_{\text{Molecular Frame Geometry}} \underbrace{J_{l}^{-k}\left(\theta_{\mu\nu}^{(\mathrm{mf})}, \phi_{\mu\nu}^{(\mathrm{mf})}\right)}_{\text{Molecular Frame Geometry}} \Psi(t) \rangle \right\}$$

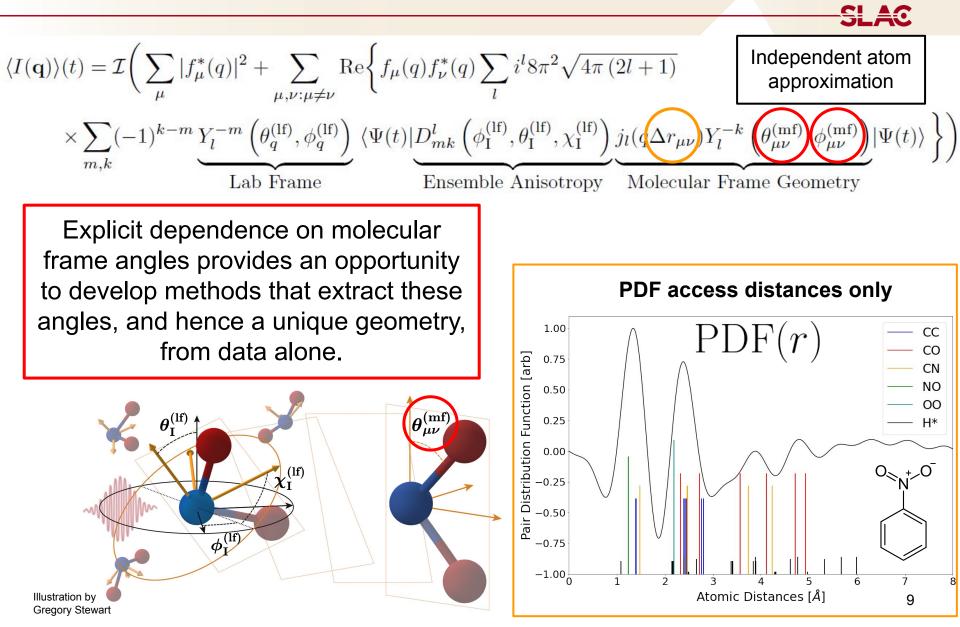
- Measurement: Lab frame anisotropy
- Simulation: Ensemble anisotropy
- **Result:** Molecular frame geometry
  - Explicit dependence on MF geometric angles
  - Each pair-wise contribution is labelled

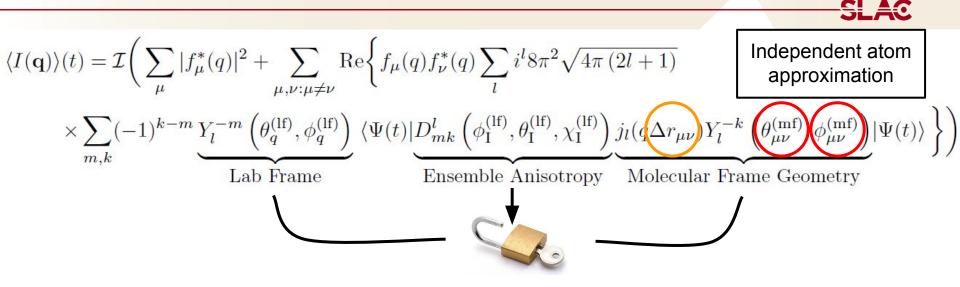


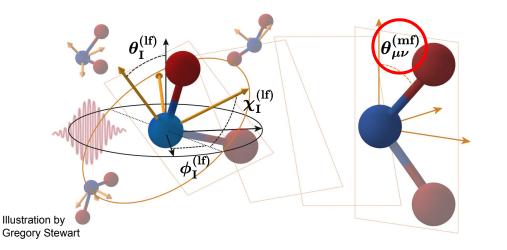
$$\langle I(\mathbf{q}) \rangle(t) = \mathcal{I} \left( \sum_{\mu} |f_{\mu}^{*}(q)|^{2} + \sum_{\mu,\nu:\mu \neq \nu} \operatorname{Re} \left\{ f_{\mu}(q) f_{\nu}^{*}(q) \sum_{l} i^{l} 8\pi^{2} \sqrt{4\pi (2l+1)} \right.$$
 Independent atom approximation 
$$\times \sum_{m,k} (-1)^{k-m} \underbrace{Y_{l}^{-m} \left( \theta_{q}^{(\mathrm{lf})}, \phi_{q}^{(\mathrm{lf})} \right)}_{\text{Lab Frame}} \langle \Psi(t) | \underbrace{D_{mk}^{l} \left( \phi_{\mathrm{I}}^{(\mathrm{lf})}, \theta_{\mathrm{I}}^{(\mathrm{lf})}, \chi_{\mathrm{I}}^{(\mathrm{lf})} \right)}_{\text{Ensemble Anisotropy}} \underbrace{j_{l}(q\Delta r_{\mu\nu})Y_{l}^{-k} \left( \theta_{\mu\nu}^{(\mathrm{mf})} \phi_{\mu\nu}^{(\mathrm{mf})} \right)}_{\text{Molecular Frame Geometry}} | \Psi(t) \rangle \right\}$$



SLAC

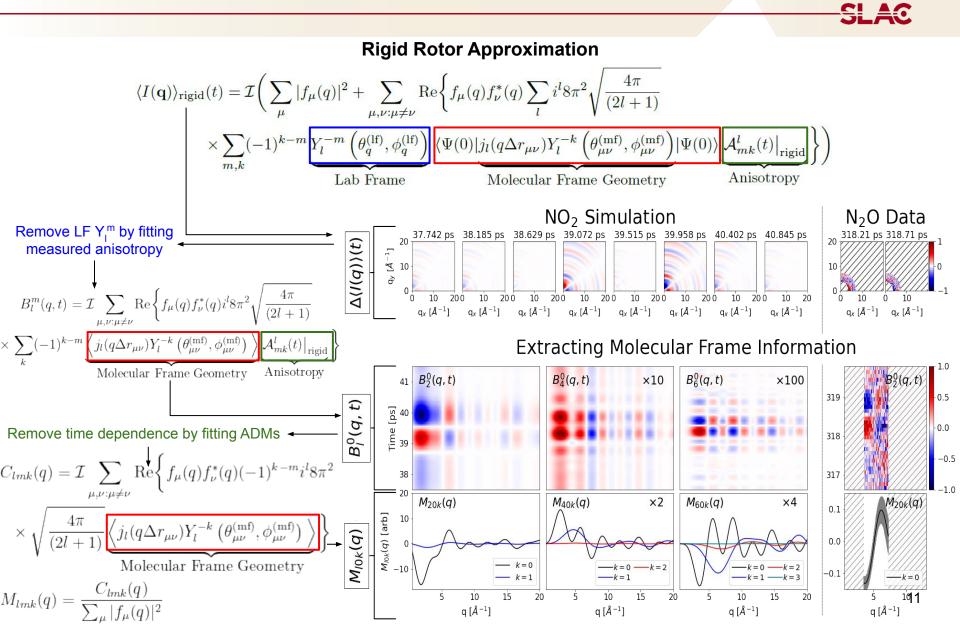






Must know the ground state rotational constants and static polarizability to simulate the ensemble anisotropy

### Accessing the MF via Deterministic Anisotropy Rigid Rotor



# **Bayesian Inference**

# Modeling $|\Psi(r^{(mf)})|^2$ and Search Parameters

- Relation between measurement and molecular frame geometry
- What we want

What we have

- Invert  $C_{lmk}(q)$  for  $|\Psi(\mathbf{r}^{(mf)})|^2$
- ~10 eqn / ~10 terms / ~300
   variables / embedded in 3N-6 dims
- How we do it
  - Model  $|\Psi(\mathbf{r}^{(mf)})|^2 \approx P(\mathbf{r}^{(mf)}|\boldsymbol{\theta},C)$
  - Retrieve P(**θ**|C)

$$C_{lmk}(q) = \mathcal{I} \sum_{\mu,\nu:\mu\neq\nu} \operatorname{Re} \left\{ f_{\mu}(q) f_{\nu}^{*}(q) (-1)^{k-m} i^{l} 8\pi^{2} \\ \times \sqrt{\frac{4\pi}{(2l+1)}} \underbrace{\int j_{l}(q\Delta r_{\mu\nu}) Y_{l}^{-k} \left(\theta_{\mu\nu}^{(mf)}, \phi_{\mu\nu}^{(mf)}\right) \left|\Psi(\mathbf{r})\right|^{2} d\mathbf{r}} \right\} \\ \text{Molecular Frame Geometry} \\ C_{lmk}^{(\text{calc})}(q, \mathbf{\Theta}) = \mathcal{I} \sum_{\mu,\nu:\mu\neq\nu} \operatorname{Re} \left\{ f_{\mu}(q) f_{\nu}^{*}(q) (-1)^{k-m} i^{l} 8\pi^{2} \\ \times \sqrt{\frac{4\pi}{(2l+1)}} \underbrace{\int j_{l}(q\Delta r_{\mu\nu}) Y_{l}^{-k} \left(\theta_{\mu\nu}^{(mf)}, \phi_{\mu\nu}^{(mf)}\right) P(\mathbf{r}, \mathbf{\Theta}|C) d\mathbf{r}} \right\} \\ \text{Molecular Frame Geometry}$$

Molecular Frame Geometry

SLAC

13

$$P(\mathbf{r}, \Theta | C) \approx |\Psi(\mathbf{r})|^{2}$$

$$P(\Theta | C) = \int P(\mathbf{r}, \Theta | C) d\mathbf{r}$$
Delta Distribution:
$$P^{(\delta)}(\mathbf{r}, \Theta | C) = \delta \left( \Theta^{(\text{delta})} - \mathbf{r} \right)$$

$$\Theta^{(\text{delta})} = \left[ \langle \text{NO}^{(1)} \rangle, \langle \text{NO}^{(2)} \rangle, \langle \angle \text{ONO} \rangle \right]$$
Normal Distribution:
$$P^{(\mathcal{N})}(\mathbf{r}, \Theta | C) = \frac{1}{\sqrt{2\pi}^{N_{dof}} \prod_{i=0}^{i \leq N_{dof}} \Theta^{(\text{gauss})}_{2i+1}} \exp \left\{ \frac{-1}{2} \sum_{i=0}^{i \leq N_{dof}} \left( \frac{\Theta^{(\text{gauss})}_{2i} - \mathbf{r}_{i}}{\Theta^{(\text{gauss})}_{2i+1}} \right)^{2} \right\}$$

$$\Theta^{(\text{gauss})} = \left[ \langle \text{NO}^{(1)} \rangle, \sigma \left( \text{NO}^{(1)} \right), \langle \text{NO}^{(2)} \rangle, \sigma \left( \text{NO}^{(2)} \right), \langle \angle \text{ONO} \rangle \right]$$

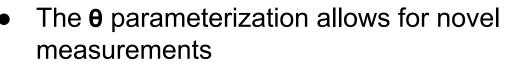
# Modeling $|\Psi(r^{(mf)})|^2$ and Search Parameters

 $P(\mathbf{r}, \boldsymbol{\Theta} | C) \approx |\Psi(\mathbf{r})|^2$ 

 $P^{(\delta)}(\mathbf{r}, \Theta | C) = \delta \left( \Theta^{(\text{delta})} - \mathbf{r} \right)$ 

 $P(\Theta|C) = \int P(\mathbf{r}, \Theta|C) d\mathbf{r}$ 

 $\Theta^{(\text{delta})} = \left[ \langle \text{NO}^{(1)} \rangle, \langle \text{NO}^{(2)} \rangle, \langle \angle \text{ONO} \rangle \right]$ 



 Degrees of freedom to specify a unique geometry

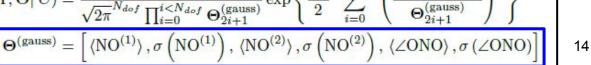
Normal Distribution:  $P^{(\mathcal{N})}(\mathbf{r}, \Theta | C) = \frac{1}{\sqrt{2\pi^{N_{dof}} \prod_{i=0}^{i < N_{dof}} \Theta_{2i+1}^{(gauss)}}} \exp$ 

Bond distances and angles

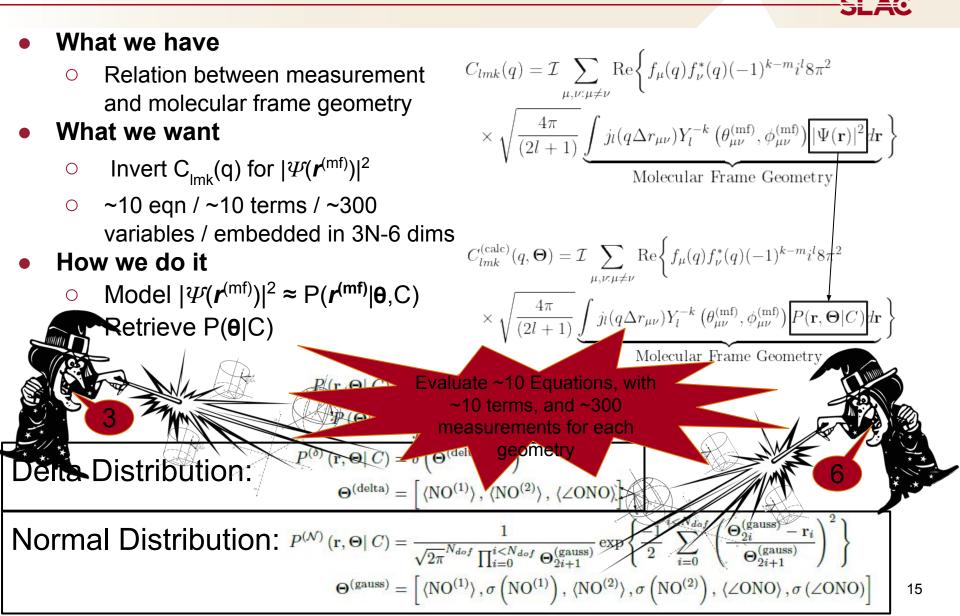
**Delta Distribution:** 

• Width of the wave packet  $\sigma((...))$ 



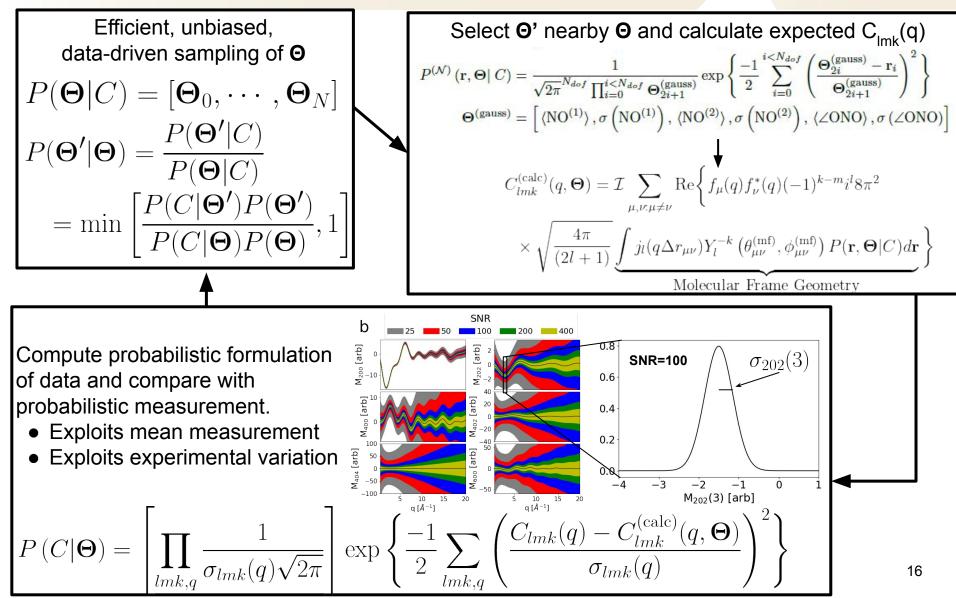


# Modeling $|\Psi(r^{(mf)})|^2$ and Search Parameters



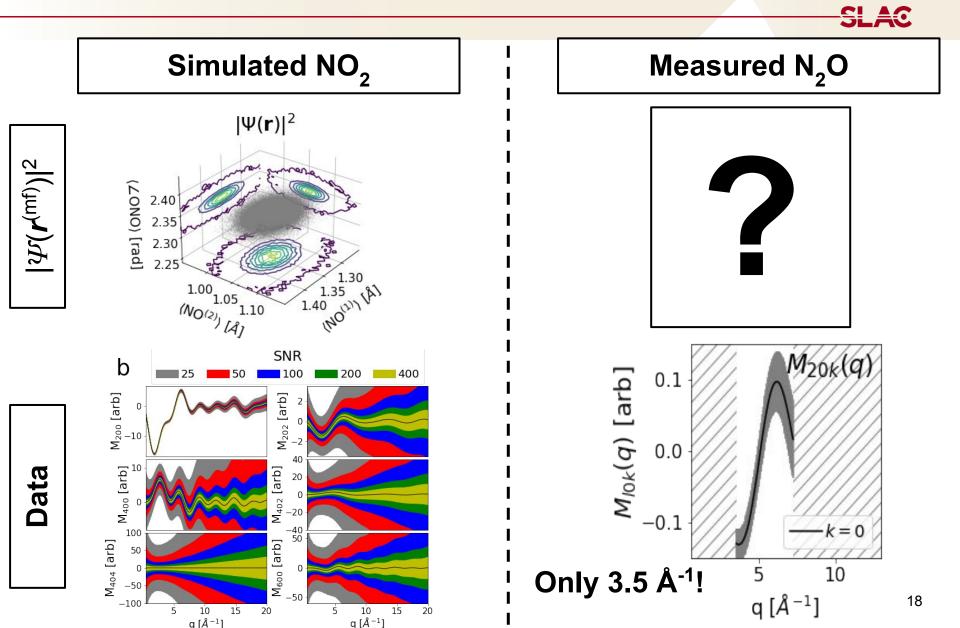
#### **Metropolis-Hastings Algorithm**

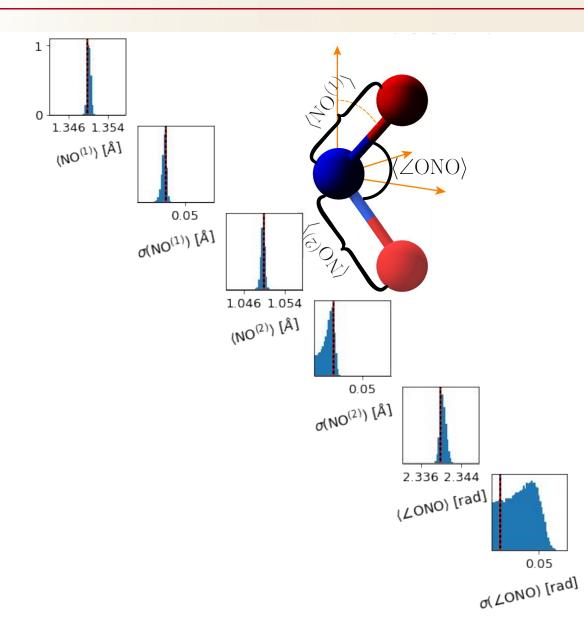
SLAC



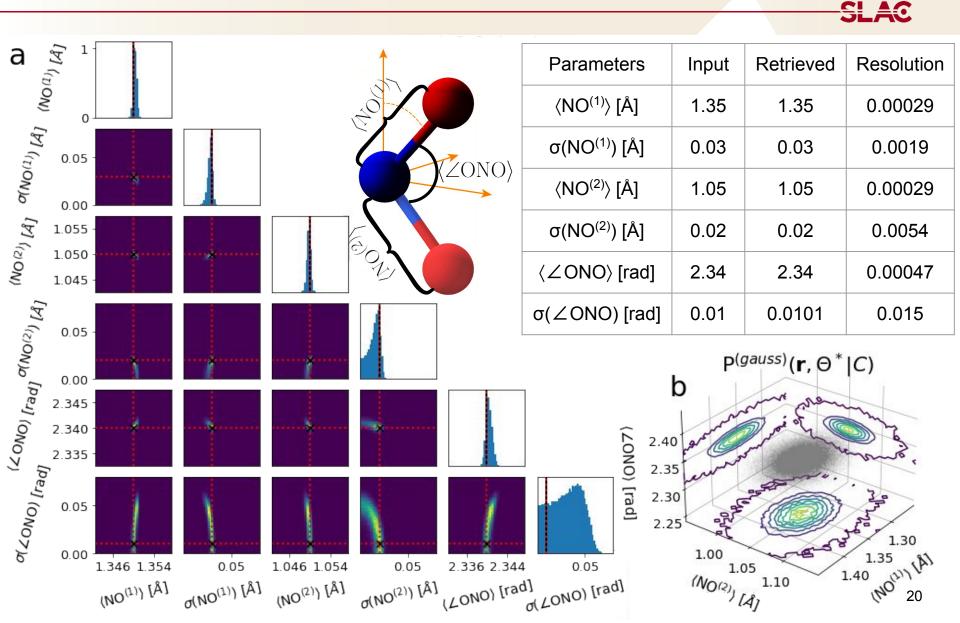
# Application to simulated $NO_2$ and measured $N_2O$

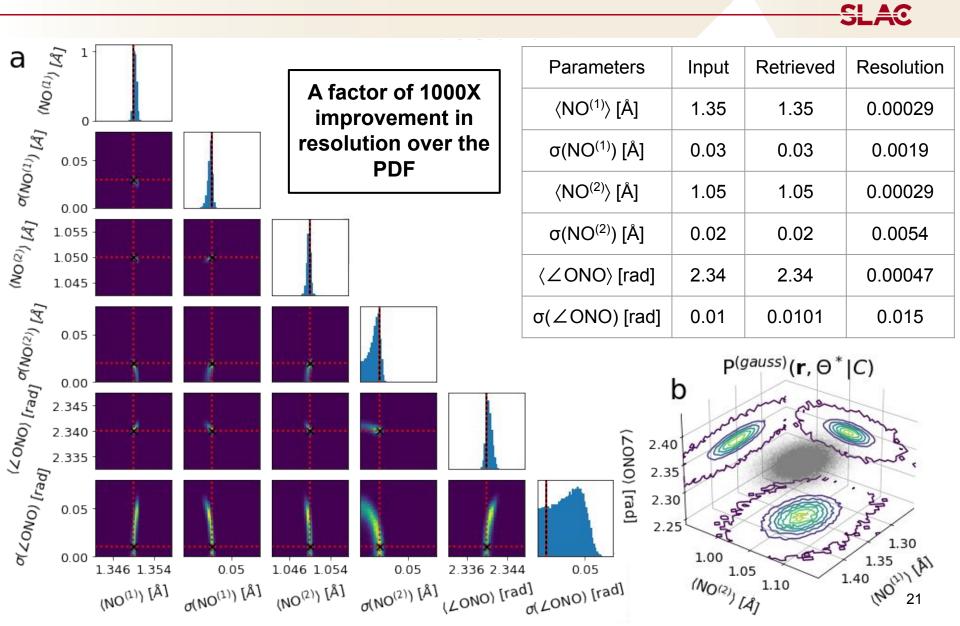
#### Retrieving the MF Geometry Probability Distribution Algorithm Input

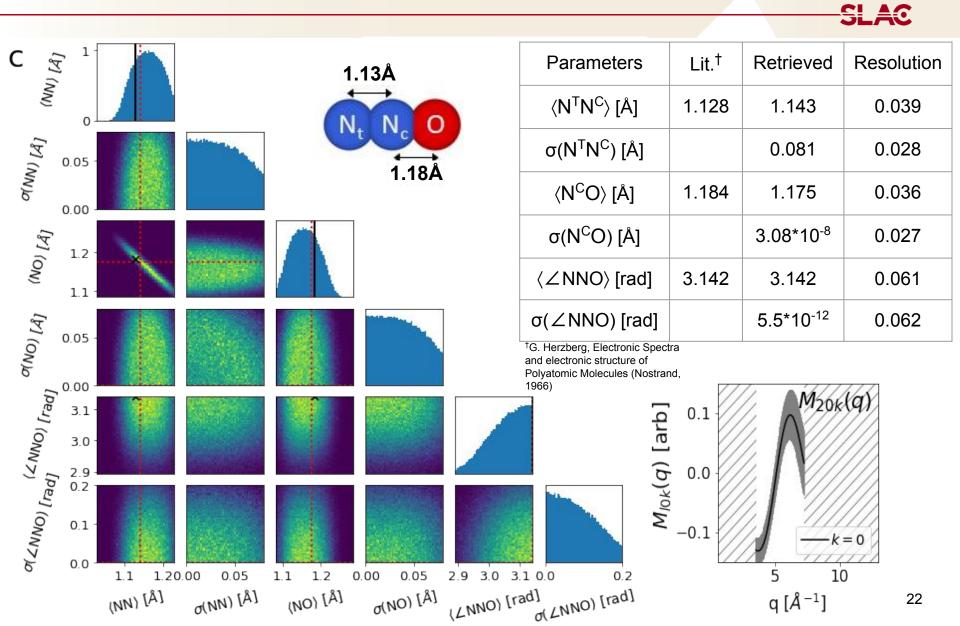


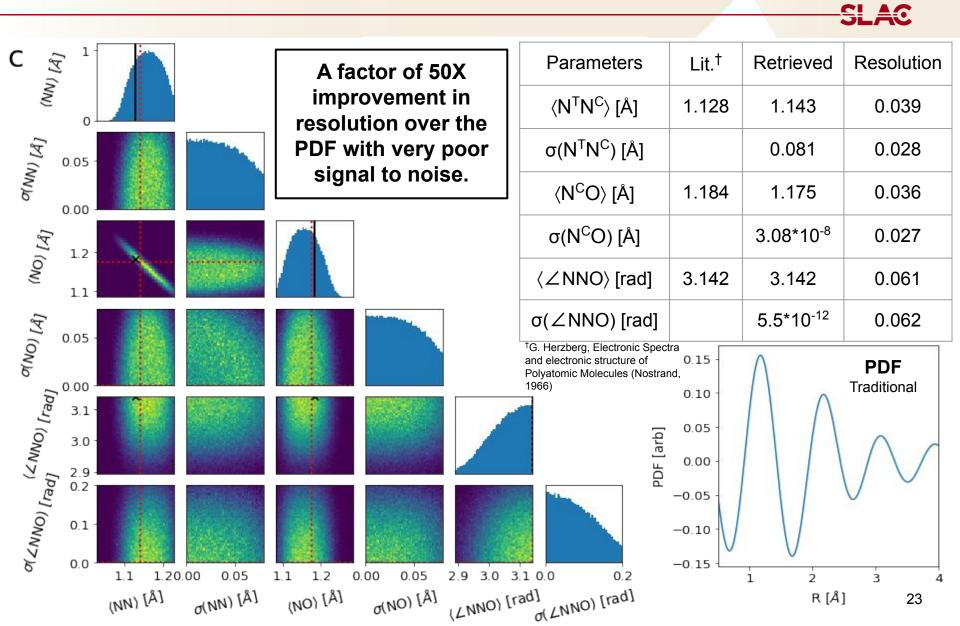


SLAC







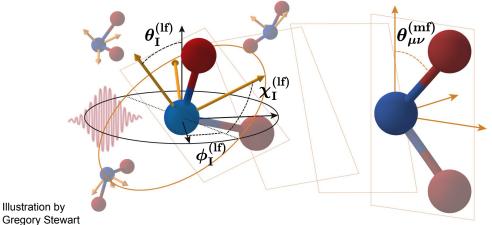


SLAC

$$\langle I(\mathbf{q}) \rangle_{\rm sep}^{(2)}(t,\tau) = \mathcal{I}\left(\sum_{\mu} |f_{\mu}(q)|^2 + \sum_{\mu,\nu:\mu\neq\nu} \operatorname{Re}\left\{f_{\mu}(q)f_{\nu}^*(q)\sum_{l} i^l 8\pi^2 \sqrt{4\pi \left(2l+1\right)} \sum_{m_1,m_2} (-1)^{m_1-m_2}\right\}\right)$$

 $\times Y_l^{-m_2} \left(\theta_q^{(\mathrm{lf})}, \phi_q^{(\mathrm{lf})}\right) \tilde{\mathcal{A}}_{m_1m_2}^l(n, n'; \tau) \left(\psi_{\mathrm{el-vib}}^{n'}(t) \left| j_l(q\Delta r_{\mu\nu}) Y_l^{-m_1} \left(\theta_{\mu\nu}^{(\mathrm{mf})}, \phi_{\mu\nu}^{(\mathrm{mf})}\right) \right| \psi_{\mathrm{el-vib}}^n(t) \right)$ 

- Separation of rotational and vibrational time scales
- Independent atom approximation
- Measurement: Lab frame anisotropy
- Simulation: Ensemble anisotropy
- Result: Molecular frame geometry
  - Explicit dependence on MF geometric angles
  - Each pair-wise contribution is labelled



Rotational dynamics is of order a few to 10 picoseconds and vibrational or isomerization dynamics of interest are often on the femtosecond timescale. sufficient rotation occurs lf outside of the ground state geometry one can use  $C_{000}(q,t)$ which independent is of anisotropy but does not have an explicit dependence on the molecular frame angles.



- Directly probe  $|\Psi(\mathbf{r}^{(mf)})|^2$  in a high dimensional space
  - Rigorously retrieve distribution of geometry parameters in high dimensions
  - MHA: efficient, unconstrained, and unbiased geometric search
- Generally applicable to current experiments and (potentially) excited state dynamics
  - Choice of model (Normal, ...) allows novel measurements like width
  - Can use induced anisotropy from excitation dipole and C<sub>000</sub>(q,t)
- High resolution (roughly 100-1000 times better than PDF)
  - Simulation resolutions distances/angles: Order 1 0.1 pm / ~1 mrad
  - Data with LMK=[2,0,0] and q=[3.5,7] Å<sup>-1</sup> distances/angles: ~4 pm / 6 mrad
  - High signal to noise is more important than q range
- Potentially turn ultrafast gas phase diffraction into a discovery oriented technique without requiring excited state simulations
  - This analysis only requires knowledge of the ground state geometry and ensemble anisotropy simulations which are much more tractible than excited state dynamics

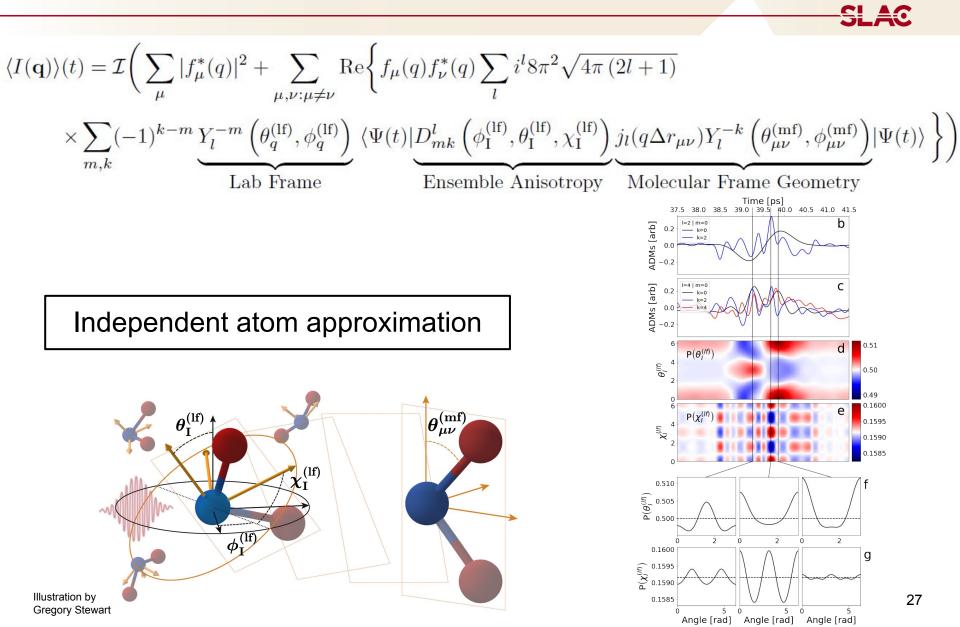








# **Backup Slides**

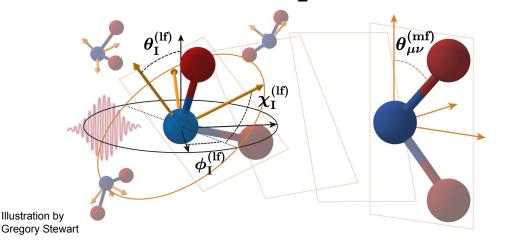


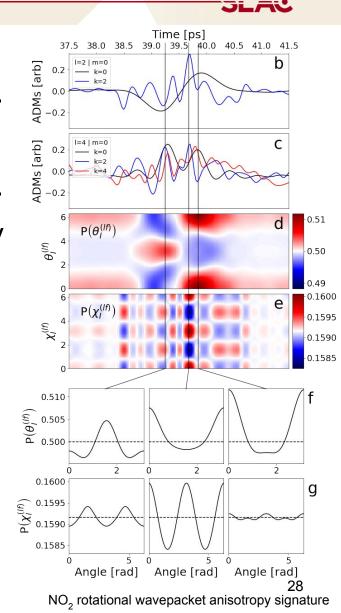
# **Anisotropy Reveals the Molecular Frame (MF)**

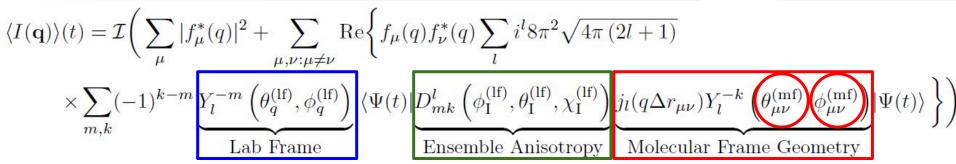
- Anisotropy provides constraints on molecular frame (MF) degrees of freedom.
- Combining many measurements (constraints) allows one to retrieve the MF.

#### Application in photo-electron spectroscopy

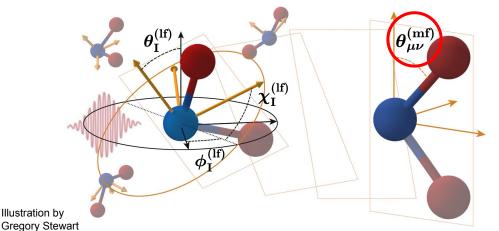
- V. Makhija, et. al., (2016), arXiv:1611.06476 [physics.atom-ph]
- C. Marceau, et. al., Phys. Rev. Lett. 119, 083401 (2017)
- M. Gregory, et. al., (2020), arXiv:2012.04561 [physics.chem-ph]
- Use a stretched NO<sub>2</sub>: an asymmetric top







- Independent atom approximation
- Measurement: Lab frame anisotropy
- Simulation: Ensemble anisotropy
- Result: Molecular frame geometry
  - Explicit dependence on MF geometric angles
  - Each pair-wise contribution is labelled



Explicit dependence on molecular frame angles provides an opportunity to develop methods that extract these angles, and hence a unique geometry, from data alone.

## Retrieving the MF Geometry Probability Distribution Delta Distribution and Systematic Error

#### **Delta Distribution Systematic Error**

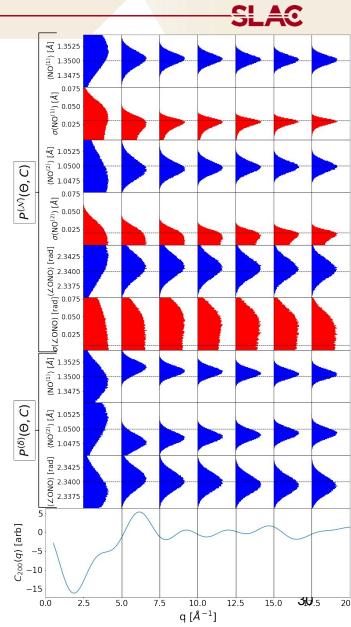
- Assumes signal from ensembles and a single geometry are comparable
- Accuracy is roughly 1000 times worse
- At ≤picometer resolution, the correct value can be 2-3 standard deviations of P(θ|C)

#### **Normal Distribution Mitigates this Systematic**

- Normal distribution P(**θ**|C) distributions are closely centered around the expected value
- The 1d mode does not change with q range

#### Why use the delta distribution?

- It is of order 100 times faster
- Provides sufficient accuracy for debugging analysis



Convergence: Autocorrelation Time ( $\tau$ )



Criteria for each chain (1000 chains are used)

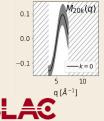
- At least 100  $\tau$  in length
- $\Delta \tau / \tau < 0.01$

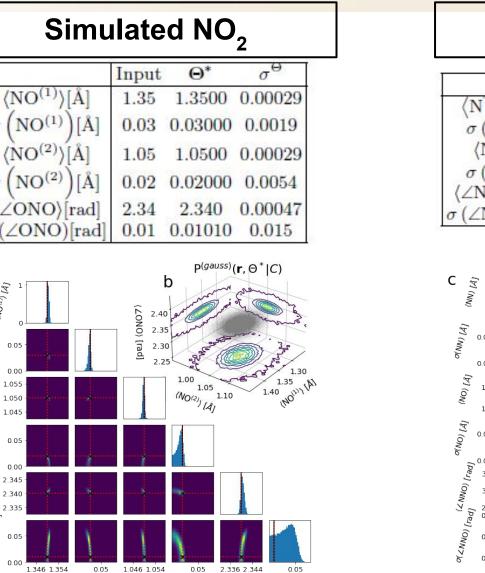
#### Autocorrelation Time

• Number of steps needed for geometries to be uncorrelated

• Expectations: 
$$E_{p(\theta)}[f(\theta)] \approx \frac{1}{N} \sum_{n}^{N} f\left(\theta^{(n)}\right)$$
 SEM =  $\sqrt{\frac{\operatorname{Var}_{p(\theta)}[f(\theta)]}{N}}$ 

• Correlation Effects: SEM = 
$$\sqrt{\frac{\tau}{N}} \operatorname{Var}_{p(\theta)}[f(\theta)]$$





σ(NO<sup>(2))</sup> [Å] (LONO) [rad] σ(LONO) [rad]

 $\sigma$ 

 $\sigma$ 

 $\sigma$ 

MOR) [4] MUNIJ [4] (NOU) [4]

(2010) [rad] o(NO(2)) [A]

2.335 (Deal) (ONOZ)o

0.05

0.00

1.055

1.050

1.045

0.05

0.00 2.345 2.340

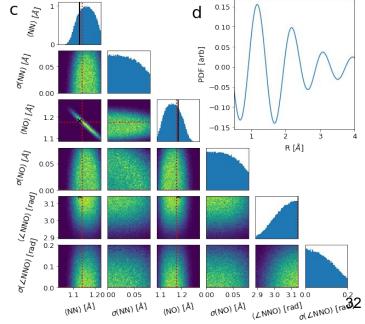
σ(NO<sup>(1)</sup>) [Å]

(NO<sup>(1)</sup>) [Å]

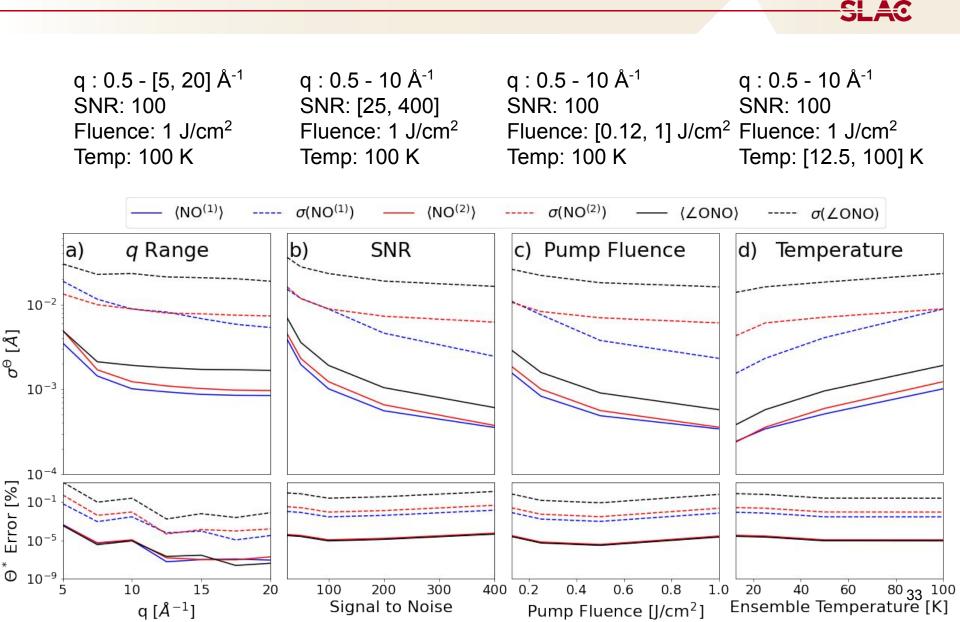
(NO<sup>(2)</sup>) [Å]

# Measured N<sub>2</sub>O

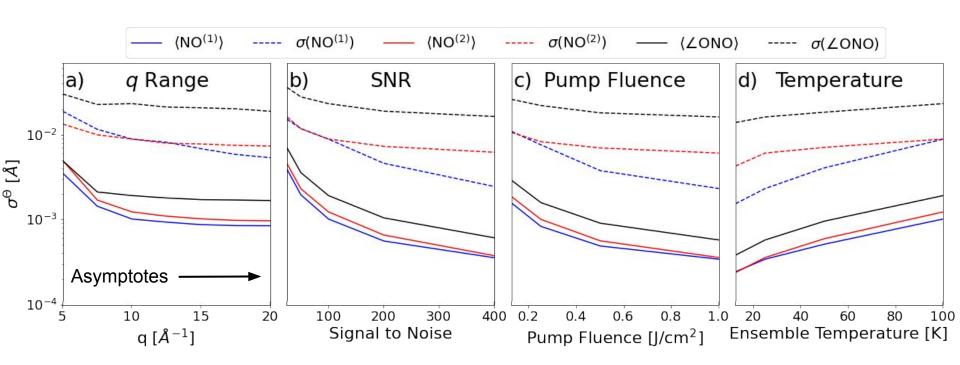
| 9<br>10 10 10 10 10 10 10 10 10 10 10 10 10 1 | $\Theta^*_{\text{Literature}}$ | $\Theta^*$            | $\sigma^{\Theta}$ |
|-----------------------------------------------|--------------------------------|-----------------------|-------------------|
| $\langle N^T N^C \rangle$ [Å]                 | 1.128                          | 1.142                 | 0.039             |
| $\sigma$ (NN) [Å]                             |                                | 0.081                 | 0.028             |
| (NO) [Å]                                      | 1.184                          | 1.175                 | 0.036             |
| $\sigma$ (NO) [Å]                             |                                | $3.08 \times 10^{-8}$ | 0.027             |
| (∠NNO) [rad]                                  | 3.142                          | 3.142                 | 0.061             |
| $\sigma$ ( $\angle$ NNO) [rad]                |                                | $5.5 \times 10^{-12}$ | 0.062             |



#### Retrieving the MF Geometry Probability Distribution Experimental Parameters

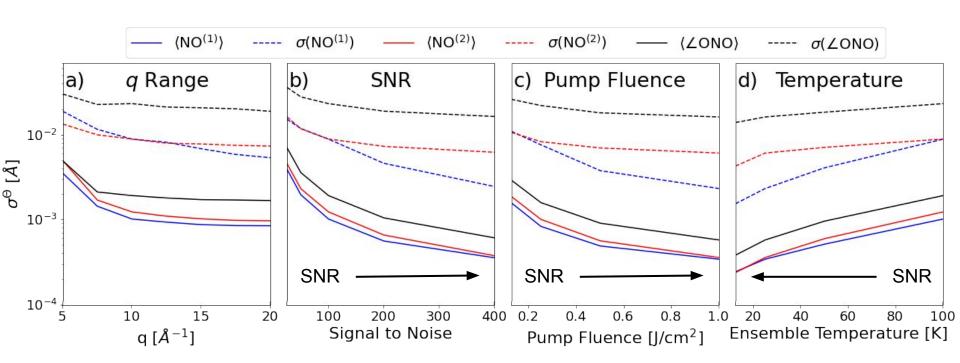


#### Retrieving the MF Geometry Probability Distribution Experimental Parameters



SLAC

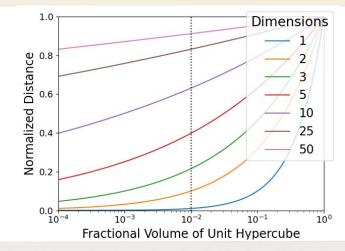
#### Retrieving the MF Geometry Probability Distribution Experimental Parameters



SLAC

### **Curse of Dimensionality**





#### Assumptions

- 1. Grid Search
- 2. Ignore hydrogens
- 3. Know atom pair-wise distances within 1 Å

Degrees of freedom:  $N_{dof} = 3N_{atoms} - 6$ Number of samples:  $N_s$ Number of sample per dimension:  $N_s/D$ Sampled volume given SS step size:  $V_s$ |SS

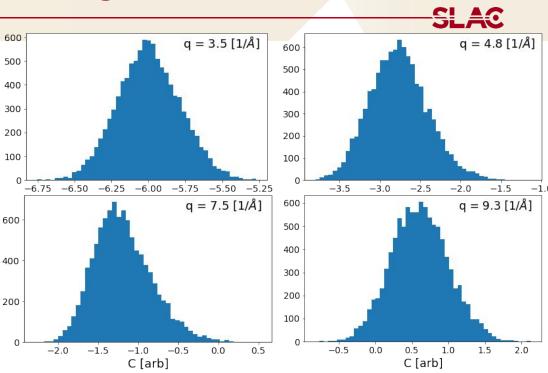
| $NO_2$          |                   |  | Cyclohexadiene<br>N <sub>dof</sub> = 12 |                   |                     |                      |  |
|-----------------|-------------------|--|-----------------------------------------|-------------------|---------------------|----------------------|--|
| Ns              | N <sub>s</sub> /D |  | N <sub>s</sub>                          | N <sub>s</sub> /D | V <sub>s</sub>  0.1 | V <sub>s</sub>  0.25 |  |
| 10 <sup>6</sup> | 100               |  | 10 <sup>6</sup>                         | 3.16              | 10 <sup>-5</sup> %  | 5.96%                |  |
| 10 <sup>7</sup> | 215               |  | 10 <sup>7</sup>                         | 3.83              | 10 <sup>-4</sup> %  | 59.6%                |  |
| 10 <sup>8</sup> | 464               |  | 10 <sup>8</sup>                         | 4.64              | 10 <sup>-3</sup> %  | >100%                |  |

 $N_{dof} = 21$ N<sub>s</sub>/D N<sub>s</sub> V<sub>s</sub>|0.1 V<sub>s</sub>|0.25 10<sup>6</sup> 10-14% 2.3×10<sup>-5</sup>% 1.93 10-13% 10<sup>7</sup> 2.3×10<sup>-4</sup>% 2.15 10<sup>8</sup> 10-12% 2.3×10<sup>-3</sup>% 2.40

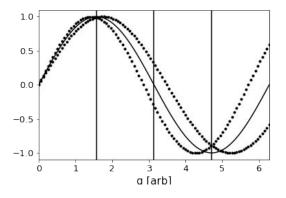
Nitrobenzene

#### **Systematic Errors in Retrieving Geometric Parameters**

- Systematic errors are caused by non-gaussian C<sub>Imk</sub>(q) distributions
- Gaussian distributions of geometries lead to non-gaussian distributions due to sinusoids.



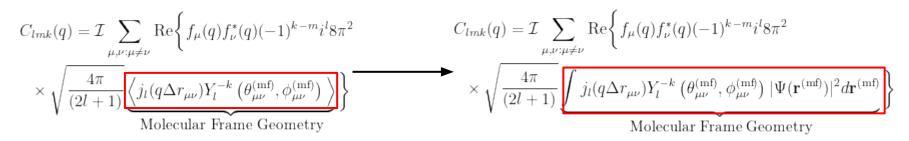
$$P(C|\mathbf{r}^{(mf)}) = \prod_{lmk,q} \frac{1}{\sigma_{lmk}(q)\sqrt{2\pi}} \exp\left\{\frac{-1}{2} \left(\frac{C_{lmk}^{(data)}(q) - C_{lmk}^{(calc)}(q, \mathbf{r}^{(mf)})}{\sigma_{lmk}(q)}\right)^2\right\}$$



SLAC

38

What we have: Molecular frame representations for the nuclear geometry with explicit dependence on pair-wise distances and angles



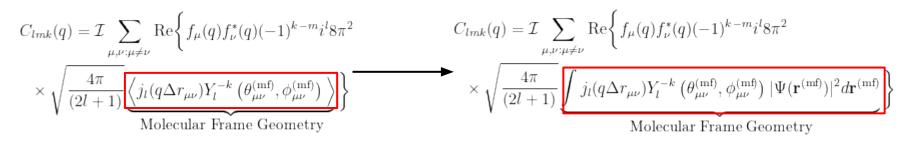
What we want: Invert the integral equation for  $|\Psi(\mathbf{r}^{(mf)})|^2$ 

How we do it: Approximate  $|\Psi(\mathbf{r}^{(mf)})|^2$  with a chosen distribution and solve for the model parameter ( $\mathbf{\Theta}$ ) distribution P( $\mathbf{\Theta}|$ C)

$$\begin{aligned} P(\mathbf{r}, \Theta | C) &\approx |\Psi(\mathbf{r})|^2 \\ P(\Theta | C) &= \int P(\mathbf{r}, \Theta | C) \, d\mathbf{r} \\ \hline \mathbf{Delta \ Distribution:} & \frac{P^{(\delta)}(\mathbf{r}, \Theta | C) = \delta\left(\Theta^{(\text{delta})} - \mathbf{r}\right)}{\Theta^{(\text{delta})} = \left[\langle \text{NO}^{(1)} \rangle, \langle \text{NO}^{(2)} \rangle, \langle \angle \text{ONO} \rangle\right]} \\ \hline \mathbf{Normal \ Distribution:} & P^{(\mathcal{N})}(\mathbf{r}, \Theta | C) = \frac{1}{\sqrt{2\pi}^{N_{dof}} \prod_{i=0}^{i < N_{dof}} \Theta_{2i+1}^{(\text{gauss})}} \exp\left\{\frac{-1}{2} \sum_{i=0}^{i < N_{dof}} \left(\frac{\Theta_{2i}^{(\text{gauss})} - \mathbf{r}_i}{\Theta_{2i+1}}\right)^2\right\} \\ \Theta^{(\text{gauss})} &= \left[\langle \text{NO}^{(1)} \rangle, \sigma\left(\text{NO}^{(1)}\right), \langle \text{NO}^{(2)} \rangle, \sigma\left(\text{NO}^{(2)}\right), \langle \angle \text{ONO} \rangle, \sigma\left(\angle \text{ONO} \rangle\right)\right] \end{aligned}$$

SLAC

What we have: Molecular frame representations for the nuclear geometry with explicit dependence on pair-wise distances and angles



#### What we want: Invert the integral equation for $|\Psi(\mathbf{r}^{(mf)})|^2$

**How we do it**: Approximate  $|\Psi(\mathbf{r}^{(mf)})|^2$  with a chosen distribution and solve for the model parameter ( $\mathbf{\Theta}$ ) distribution P( $\mathbf{\Theta}|$ C) When finding  $\mathbf{\Theta}$  one

$$P(\mathbf{r},\Theta|C) \approx |\Psi(\mathbf{r})|^{2}$$

$$P(\Theta|C) = \int P(\mathbf{r},\Theta|C) d\mathbf{r}$$

$$P^{(\delta)}(\mathbf{r},\Theta|C) = \delta\left(\Theta^{(\text{delta})} - \mathbf{r}\right)$$

$$\Theta^{(\text{delta})} = \left[\langle \text{NO}^{(1)} \rangle, \langle \text{NO}^{(2)} \rangle, \langle \angle \text{ONO} \rangle\right]$$

$$\text{Normal Distribution:} P^{(\mathcal{N})}(\mathbf{r},\Theta|C) = \frac{1}{\sqrt{2\pi}^{N_{dof}} \prod_{i=0}^{i < N_{dof}} \Theta^{(\text{gauss})}_{2i+1}} \exp\left\{\frac{-1}{2}\sum_{i=0}^{i < N_{dof}} \left(\frac{\Theta^{(\text{gauss})}_{2i} - \mathbf{r}_{i}}{\Theta^{(\text{gauss})}_{2i+1}}\right)^{2}\right\}$$

$$\Theta^{(\text{gauss})} = \left[\langle \text{NO}^{(1)} \rangle, \sigma\left(\text{NO}^{(1)}\right), \langle \text{NO}^{(2)} \rangle, \sigma\left(\text{NO}^{(2)}\right), \langle \angle \text{ONO} \rangle\right]$$

$$39$$

SLAC

What we have: Molecular frame representations for the nuclear geometry with explicit dependence on pair-wise distances and angles

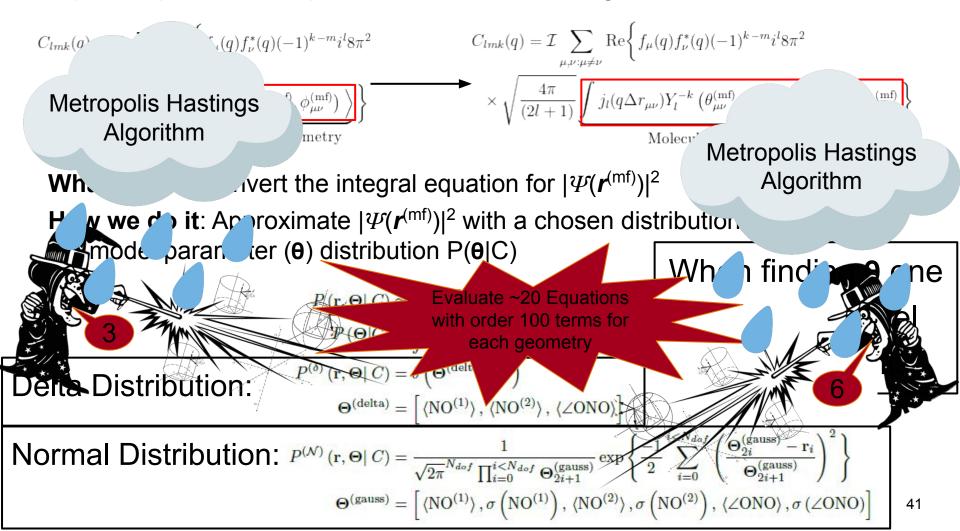


#### What we want: Invert the integral equation for $|\Psi(\mathbf{r}^{(mf)})|^2$

How we do it: Approximate  $|\Psi(\mathbf{r}^{(mf)})|^2$  with a chosen distribution and solve for model parameter (**θ**) distribution P(**θ**|C) When finding one  $\mathbb{R}(\mathbf{r},\Theta) \longrightarrow \mathbb{E}$  Evaluate ~20 Equations with order 100 terms for PIOID each geometry  $(\mathbf{r}, \Theta | C) = \mathbf{O}^{(\text{delt})}$ Délta Distribution:  $\Theta^{(\text{delta})} = \left[ \langle \text{NO}^{(1)} \rangle, \langle \text{NO}^{(2)} \rangle, \langle \angle \text{ONO} \rangle \right]$  $\Theta_{2i}^{(gauss)}$ Normal Distribution:  $P^{(\mathcal{N})}(\mathbf{r}, \Theta | C) = \frac{1}{\sqrt{2\pi^{N_{dof}} \prod_{i=0}^{i < N_{dof}} \Theta_{2i+1}^{(gauss)}}} exp$  $\Theta_{2i+1}^{(\text{gauss})}$  $\boldsymbol{\Theta}^{(\text{gauss})} = \left[ \left< \text{NO}^{(1)} \right>, \sigma \left( \text{NO}^{(1)} \right), \left< \text{NO}^{(2)} \right>, \sigma \left( \text{NO}^{(2)} \right), \left< \angle \text{ONO} \right>, \sigma \left( \angle \text{ONO} \right) \right] \right]$ 40

SLAC

What we have: Molecular frame representations for the nuclear geometry with explicit dependence on pair-wise distances and angles



# Bayesian Inferencing Metropolis Hastings Algorithm

- Inverts the system of equations to solve for the joint P(θ|C) distribution
- Unbiased sampling method designed for high dimensional spaces

$$C_{lmk}(q) = \mathcal{I} \sum_{\mu,\nu:\mu\neq\nu} \operatorname{Re} \left\{ f_{\mu}(q) f_{\nu}^{*}(q) (-1)^{k-m} i^{l} 8\pi^{2} \\ \times \sqrt{\frac{4\pi}{(2l+1)}} \underbrace{\int j_{l}(q\Delta r_{\mu\nu}) Y_{l}^{-k} \left(\theta_{\mu\nu}^{(\mathrm{mf})}, \phi_{\mu\nu}^{(\mathrm{mf})}\right) |\Psi(\mathbf{r})|^{2} d\mathbf{r}} \right\} \\ \text{Molecular Frame Geometry} \\ \mathbf{Bayesian Inferencing} \\ C_{lmk}^{(\mathrm{calc})}(q, \mathbf{\Theta}) = \mathcal{I} \sum_{\mu,\nu:\mu\neq\nu} \operatorname{Re} \left\{ f_{\mu}(q) f_{\nu}^{*}(q) (-1)^{k-m} i^{l} 8\pi^{2} \right\} \\ \times \sqrt{\frac{4\pi}{(2l+1)}} \int j_{l}(q\Delta r_{\mu\nu}) Y_{l}^{-k} \left(\theta_{\mu\nu}^{(\mathrm{mf})}, \phi_{\mu\nu}^{(\mathrm{mf})}\right) \underbrace{P(\mathbf{r}, \mathbf{\Theta}|C)} d\mathbf{r} \right\}$$

Molecular Frame Geometry

#### Method

- 1. Select neighboring **0**
- 2. Add new  $\boldsymbol{\theta}$  to P( $\boldsymbol{\theta}|C$ ) with probability P(C| $\boldsymbol{\theta}$ )<sub>New</sub>/P(C| $\boldsymbol{\theta}$ )<sub>Prev</sub>

$$P(C|\Theta) = e^{L(\Theta)} \left[ \prod_{lmk,q} \frac{1}{\sigma_{lmk}(q)\sqrt{2\pi}} \right] \exp\left\{ \frac{-1}{2} \sum_{lmk,q} \left( \frac{C_{lmk}(q) - C_{lmk}^{(\text{calc})}(q,\Theta)}{\sigma_{lmk}(q)} \right)^2 \right\}$$

### **SLAC National Accelerator Laboratory**

