Ultrafast Imaging and Tracking Instrumentation, Methods and Applications

Palo Alto, 13 – 16 March 2023

Overview of Radiation Effects on LGADs

<u>Evangelos – Leonidas Gkougkousis</u>

Introduction I

NDL MICRON SERVICONDUCTOR LIMITED

TELEDYNE

Teledyne e2v

LGAD Technology

- ✓ Invented at CNM, initially considered for tracking by IFAE, proposed for timing by UCSC
- ✓ HPK, CNM, FBK, MiCRON, BNL (USA), NDL (China), CiS, Teledyne (UK)

- ✓ Requires precise diffusion control for layer thickness:
 - ✓ Thin highly doped n-well layer $(\sim 1 1.5 \mu m)$
 - ✓ Gain layer ~ 2 µm
 - ✓ p-stop ~3 -3.5 µm
 - Different gain layer species possible:
 - ✓ Boron (standard)
 - ✓ Gallium
 - ✓ Boron +Carbon

- ➤ 4" Si-on-Si wafers (High Resistivity ~2 kΩ•cm)
- > 50 μm thickness on 250 μm support wafer
- > Different implantation species
- ➤ Single diodes of active area 0.7 x 0.7 mm
- > 5 Neutron and proton fluences tested up to $6 \times 10^{15} \, n_{eq}/cm^2$

Standard Boron
Boron + Carbon Spray
Gallium

Introduction III

Depth¹⁵

20

25

10

0

E. - L. Gkougkousis: - <u>17th Trento workshop (2022)</u>

"Detailed process characterization of carbonated LGADs through

Depth

30

Introduction IV

E. - L. Gkougkousis: <u>28th RD50 Workshop</u>, <u>Torino</u>)
"Neutron Irradiated doping profile evaluation"

June 2016

Post-Irradiation Doping Profiles

- SiMS on irradiated boron implanted structures with high sensitivity
- ✓ High (> 2 kOhm×cm) and low resistivity samples (< 2 Ohm×cm) p-type substrates tested under both proton and neutron irradiation (high resistivity is non-oxygenated, low is oxygenated)
- Up to fluences of 1×10¹⁶ n_{eq}/cm² no dopant redistribution was observed
 - Boron DOES NOT diffuse (even as interstitial) under standard operation in sensors, neither does phosphorus

Radiation Effects I

The Hamburg Neff Model

G. Lindstrom et al., NIM A 466(2001) 308-326 "Radiation damage in silicon detectors"

г					
		Radiation damage modeling			
	Terms	Acceptor Introduction	$\frac{dN_{acc.}^{con.}(t)}{dt} = g_{C_A} \times \Phi_{eq}(t)$		
		Donor Introduction	$\frac{dN_{don.}^{con.}(t)}{dt} = g_{C_D} \times \Phi_{eq}(t)$		
	Constant Damage	Acceptor Removal	$\frac{dN_{acc.}^{rem.}(t)}{dt} = -c_{C_A} \times \Phi_{eq}(t) \times N_{acc.}^{rem.}(t)$		
	Const	Donor Removal	$\frac{dN_{don.}^{rem.}(t)}{dt} = -c_{C_D} \times \Phi_{eq}(t) \times N_{acc.}^{rem.}(t)$		
	Short term annealing	Acceptor Reduction	$\frac{dN_{acc.}^{short.}(t)}{dt} = g_A \times \Phi_{eq}(t) - k_A(T) \times N_{acc.}^{short.}(t)$		
	Long term annealing	Max Introducible Acceptors	$\frac{dN_{acc.}^{Max.long.}(t)}{dt} = g_y \times \Phi_{eq}(t) - k_Y(T) \times N_{acc.}^{Max.long.}(t)$		
		Acceptor Introduction	$\frac{dN_{acc.}^{long.}(t)}{dt} = k_Y(T) \times N_{acc.}^{Max. long.}(t)$		

Radiation Effects II

E. - L. Gkougkousis: *TIPP2021*, *May 2021*

"Comprehensive technology study of radiation hard I GADs"

Four main disruptive mechanisms:

Substrate

- 1. Reduced primary charges induced in substrate
- 2. Acceptor re-introduction rate

Gain Layer

- 3. Reduced active implant through acceptor removal
- 4. Reduced mobility within gain layer through trapping

Gain reduction larger than anticipated from acceptor removal

Acceptor removal, Defect Kinetics (simplified @)

 $Rad + Si_s \rightarrow Si_i + B_s \rightarrow B_i + O \rightarrow B_iO_i$ $Rad + Si_s \rightarrow Si_i + C_s \rightarrow C_i + O \rightarrow C_i O_i$ Charge trapping

Can be engineered by oxygen trapping

The Leakage Current Transition Method (LCT) - I

- ✓ Probe active implant via depletion voltage
- ✓ Additional p-implantation gain layer creates secondary depletion region
- ✓ Mott–Schottky equation → leakage current variation at gain layer depletion
- ✓ Form of $|\partial I/\partial V|$ at depletion point corresponds to dopant transition function convoluted with instrument resolution (Gaussian X Gaussian)
- ✓ Depletion voltage determined Gaussian fit at depletion voltage for -10°C, 20°C & -30°C

E. - L. Gkougkousis et al.: "Comprehensive technology study of radiation hard LGADs"

J. Phys.: Conf. Ser. 2374 012175

- Independent
 Gaussian fit for
 temperature
- Uncertainties
 estimated from
 propagation on fit
 sigma
 - Fluences up to $3\cdot10^{15}$ n_{ea}/cm^2 in p⁺ and n^0

$$V_d = \frac{\sum_{T=-10}^{-30} {}^{o}_{C} V_{d,T_i}}{n_T}$$

$$\delta V_d = \sqrt{V_{d,sys} + V_{d,stat}}$$
 Average of fit Standard sigma deviation of V_d

13 / 3 / 2023 E. L. Gkougkousis ULITIMA 2023

The Leakage Current Transition Method (LCT) - I

- Linear dependence assumption between V_{GI} and active implant
- Normalized exponential reduction fit model on gain and V_{GL}

$$G(\%) = e^{-C_G \Phi}$$

- Linearity hypothesis tested with independent C_v and C_G fits full compatibility
- Constraints imposed on initial values to reflect charge measurements

Results

- Compatible acceptor removal coefficients between all implants
- Slight Ga advantage in p⁺ irradiation (23 GeV/c PS), higher mass reduces displacement probability in coulomb-only (far-field) interactions
- Quasi-identical performance for neutron irradiated (fast ~ 10MeV neutrons)
- Identical gain layer de-activation for all dopants with fluence

Acceptor Removal Coefficient			
Gallium	$(8.25 \pm 0.80) \times 10^{-16}$		
Boron + Carbon	$(9.33 \pm 0.78) \times 10^{-16}$		
Boron	$(9.69 \pm 1.04) \times 10^{-16}$		

The other side of the coin – FBK Carbonated

M. Ferrero et al.: <u>"Radiation resistant LGAD design"</u> NIMA, Volume 919, 1 March 2019, Pages 16-26

- Carbon is directly implanted at the gain layer only with comparable concentrations
 - An improvement is seen on the acceptor removal coefficient by a factor of 2

What does this mean?

- Irradiated Implants do not diffuse (to the nm level)
- Carbon only helps in acceptor removal when close to boron

Acceptor removal is a local process

The fact that proton and neutron irradiations fit in the same curve means that this is a point defect sensitive effect

Radiation Hardness

Gain Layer Engineering

First approximation: gain equivalent to charge in parallel plane capacitor:

- d: distance (gain layer thickness)
- a function equivalent to inverse of mean free path $(1/\lambda)$
- In irradiated silicon, λ depends on fluence, temperature and field
- Higher fields mean shorter distances to acquire same kinetic energy
- Presence of scattering centres has to be compensated with higher fields

 $G(E,T,\emptyset,d) \propto e^{\alpha(E,T,\emptyset)*d}$

 α (E,T, ϕ) impact ionization coefficient d = length of high E field

Mobility neutrons

Comparative Current to Gain Method (CG2C) - I

- ✓ Acceptor removal only gives information about active dopant, not gain
- ✓ Gain also depends on trapping levels & doping profiles
- ✓ Effects after irradiation for different defect concentrations
- ✓ For same amount of acceptor removal, different gain reduction expected

- 1. GR and pad on same substrate, all non-gain related irradiation effects can be normalized
- 2. Assumption that differences between GR n-type implant and pad n-type implant have minimal effects

Comparative Current to Gain Method (CG2C) - II

 \checkmark I_{GR}/I_{PAD} linear at the semi-log plane

✓ Gain Coefficient probed by slope of linear fit

✓ Different fits per temperature, reputed at -10 °C, -20 °C and -30 °C

E. - L. Gkougkousis: "Review of neutron irradiated 6" Sol LGAD sensors CNM 11486"

35th RD50 Workshop, November 2019

Comparative Current to Gain Method (CG2C) - III

 $N_{eff}(\Phi) = N_{eff}{}_0 - N_c \big(1 - e^{-c\Phi}\big) + g_c \Phi$ Effective dopant concentration Removable dopant constant Initial dopant concentration

Gain Red Irrad. Type	uction Coefficient C ± δC	
	Gallium	
n^0	$(3.01 \pm 0.9) \times 10^{-14}$	
p ⁺	$(2.02 \pm 0.11) \times 10^{-14}$	
Boro	on + Carbon	
n^0	$(2.57 \pm 1.1) \times 10^{-15}$	
p ⁺	$(1.37 \pm 0.24) \times 10^{-14}$	
Star	Standard Boron	
n^0	$(2.25 \pm 0.39) \times 10^{-14}$	
p ⁺	$(2.25 \pm 0.28) \times 10^{-14}$	

Results

- Gallium and Boron perform similarly
- Carbon + Boron is up to 2 times better in proton and up to 7-8 times better in neutron irradiation
- Significant variation with implant type
- Gain reduction coefficients are up to 10 x the previously estimated acceptor removal

- ✓ Each point corresponds to MPV of Landau x Gauss fit on 5k recorded events
- ✓ Measurements repeated for -10°C, -20°C & -30°C (see the backup)
- ✓ Gallium yields always 20% less charge for same voltage, carbonated 20% more

Time Resolution

E. - L. Gkougkousis: "Acceptor removal and gain Reduction in proton and neutron irradiated LGADs"

36th RD50 Workshop, June 2020

CFD Level optimization

$$(\sigma_{\mathrm{Dut}})_{\mathit{CFD}_{ij}} = \sqrt{(\sigma_{\mathrm{Tot}}^2)_{\mathit{CFD}_{ij}} - (\sigma_{\mathrm{Ref}}^2)_{\mathit{CFD}_{i}}}$$

2D optimization plot – 0.5% binning

Time Resolution: $\sigma_{tot}^2 = \sigma_{timewalk}^2 + \sigma_{jitter}^2 + \sigma_{conversion}^2 + \sigma_{clock}^2$

 $\sigma_{Dist.}^2 + \sigma_{Landau}^2 \quad \left(\frac{t_{rise}}{S/N}\right)^2 \quad \left(\frac{TDC_{bin}}{\sqrt{12}}\right)^2 \quad Fi$

- 1. Similar behavior in terms of signal shape on all implants
- 2. Time resolution follow charge trend
- 3. Charge vs ot identical for all gain layer variations

Signal Analysis

Signal Analysis

FFT

- ✓ FFT vs Voltage presents an asymptotic behavior towards a frequency
- ✓ Asymptotic frequency depends on fluence and remaining gain
- ✓ Signal frequency increases with voltage and decreases on the onset of multiplication

High Frequency noise, sensor in breakdown

Sensor Stability

Dark Rate

- ✓ All sensors with gain present dark rate at high field values
- ✓ Dark rate events result out of thermally induced electron-hole pairs drifting picked up by the field
- ✓ Random in nature, follow a Poisson distribution
- ✓ An inverted s-curve study for each sensor defines the stable region or the acceptable level of shot noise.

Stability vs Threshold

Dark Rate

Threshold effect

- Un-irradiated HPK P2
- Breakdown ~156 V
- Measured at room temp
- Different Constant threshold triggers (1.8 – 5.4 fC) applied
- Bayesian Uncertainties
- Max saturation rate 230 kHz

HPK - P2W25 L17P12, Room Temp.

Leakage Current effect

- Sensor far from breakdown
 - Leakage current not demonstrate significant variation
- Stationary leakage current at exponential rate increase, breakdown over 1e5 Hz

Efficiency

Head Room

- ➤ Measurements with radioactive ⁹⁰Sr source
- ➤ Define stable operation points satisfying the following conditions:

Sensor not in breakdown
Mean field inside sensor < 13.4 V/µm
Autro-trigger rate < 1% of source trigger

Single Event Burn-Out

Catastrophic failure

- Catastrophic breakdown events occur at mean bias voltages of $\sim 12 \text{ V/}\mu\text{m}$ for planar structures
- Effect observed on LGADs and planar pixels after irradiation
- High energy deposition close to a tap cluster creating a highly localized field variation which leads to high gain
- Observed in SPS test beams in 2017 and verified by lasers at ELI beamlines

Future developments

HAB = Half Activated Boron

- Stop O₂ boron deactivation pathway by increasing amount of non-activated boron.
- Bi will capture the Oi before it encounters a substitutional boron
- Extremely promising first results

K. Hara et al.: "Improvement of timing resolution and radiation tolerance for finely segmented AC-LGAD sensors"

Trento 2023

Compensation

- Increase boron concentration but add some type of n-implant to maintain N_{eff} to acceptable levels
- If C_D < C_A additional acceptors are disengaged to participate to the Neff with irradiation
- First results not promising

Bias Voltage [V]

Future developments

M. Moll: "Displacement Damage in Silicon Detectors for High Energy Physics"

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 8,

Removal Coefficients

- Removal coefficient dependent on initial acceptor concentration
- Almost complete removal for high $N_{\rm eff}$, ~ 40 % removal for high resistivity substrates

 $N_{C.}(\Phi_{eq.}) = g_c \times \Phi_{eq.} - f_c \times N_{eff.}(0) (1 - e^{-1})$

Acceptor removal part

Re-Introduction rate g

/ > 0 primarily acceptor introduction

✓ < 0 primarily donor introduction

Original doping concentration

Acceptor Removal Coefficient

Removable Fraction

Future developments

Alternative dopants

- ✓ Radiation damage lead to acceptor removal though defect kinematics
- ✓ Modify gain layer implants to generate beneficial defects for gain (gain regulation):

• Lithium co-implantation:

 Boron with Lithium co-implantation demonstrates better neutron radiation hardness

Replace Boron with Indium

- Indium higher mass and lower reaction cross-section expected to generated less O_i defect clusters
- ✓ Implantation energy and doping profiles already optimized via TCAD simulations
- Lithium co-implantation ONLY on p-implant layers
 - Lithium is n-type but in low doses should not impact p layer
 - Proven to improve radiation hardness of solar cells after 1MeV neutron irradiation
 - Lowers annealing temperature when implanted in substrate
 - Defect engineering at low temperatures E. Oliviero et Al. (link)
 - Original Solar cell study Weinberg et Al. (link)

E. <u>-</u> L. Gkougkousis: <u>"Parametric process optimization for Indium, Gallium and Boron dopants using TCAD simulation modelling"</u>

16th Trento Workshop

Doping Profiles

13 / 3 / 2023 E. L. Gkougkousis ULITIMA 2023 **24**

Conclusions

Thoughts and discussion

Three methods of radiation hardness:

1. Active Gain Implant: No measureable improvement wrt different implants

2. Effective Gain Estimation: Gallium-Boron behave similarly

Carbon up to 2x better in neutrons / protons

3. MIPs Charge collection: 20 % improvement in required bias for Carbon

20 % degradation for Gallium

Consistent with defect kinetics theory and an exponential field -gain dependence Results consistent in all temperatures (-10°C, -20°C, 30°C)

- No degradation in leakage current
- 15% degradation on available headroom in Carbon samples
- 15% degradation in stability of Carbon samples
- No effect on signal properties, efficiency, noise or timing
- In and Li co-implantation as next steps on defect engineering

Backup

Standard Candle Process

- New process optimization require standard profile as a reference
 - ✓ Use Secondary Ion Mass Spectroscopy (SiMS)profiles form LGAD gain layers
 - ✓ Target Boron and Gallium process (well understood)
 - ✓ Accuracy of 1e15/cm³

Gallium Nominal Parameters				
Nominal Dose	Anealing Temp	Anealing Time	Implant. Energy	
[atoms/cm ²]	[°C]	[min]	[KeV]	
1,00E+14	1100	180		
1,00E+14	1100	100		
1,00E+14	1100	100	195	
1,00E+15	1100	180		
1,00E+15	1100	100		

Target optimization parameters

- ✓ Implantation energy
- Implantation dose
- ✓ Screen oxide layer thickness
- ✓ Diffusion Time
- ✓ Tilt Angle

Carbon Calibration Profiles

Sensitivity Optimization

✓ The implant concentration is estimated in each case following:

$$C = RSF \times \frac{i_i^{cal.}}{i_M^{cal.}}$$

$$\delta C = \sqrt{\left(\frac{i_i^{cal.}}{i_M^{cal.}} \times \delta RSF\right)^2 + \left(\frac{RSF}{i_M^{cal.}} \times \frac{1}{\sqrt{i_i^{cal.}}}\right)^2 + \left(RSF \times \frac{i_i^{cal.}}{\left(i_M^{cal.}\right)^2} \times \frac{1}{\sqrt{i_M^{cal.}}}\right)^2}$$

- ✓ Without any additional optimization, a resolution of $(4.71 \pm 0.03) \times 10^{16}$ atoms/cm³ can be achieved
- The resolution increased for smaller raster sizes while maintain same beam intensity, resulting in higher observant signal intensity
- ✓ Downside of such an approach higher abrasion speed, lees points
- ✓ In essence this is the equivalent in measurement terms of statistical smoothing of profiles.
- ✓ Points recorded every 17 nm, limit of feature size one can probe for achieving such resolution

Gaussian fit on point projection to estimate resolution form σ

	0110			
	Beam Parameters	Abrasion Speed v (nm/sec)	Scaling Factor RSF (atoms/cm ³	• •
	100μm size, 33μm reg., 150μm dia., 0V off.	4.35 ± 0.20	(2.77 ± 0.06) × 10	$(4.85 \pm 0.11) \times 10^{16}$
l	100μm size, 8μm reg., 150μm dia., 0V off.	4.43 ± 0.21	$(3.61 \pm 0.08) \times 10^{-2}$	$(1.80 \pm 0.01) \times 10^{17}$
	80μm size, 8μm reg., 150μm dia., 0V off.	6.93 ± 0.34	$(2.62 \pm 0.06) \times 10^{-2}$	$(1.48 \ 0.005) \times 10^{17}$
	60μm size, 8μm reg., 150μm dia., 0V off.	12.11 ± 0.65	$(1.82 \pm 0.04) \times 10^{-2}$	$(7.89 \pm 0.02) \times 10^{16}$
	50μm size, 8μm reg., 150μm dia., 0V off.	14.64 ± 0.84		$(7.44 \pm 0.01) \times 10^{16}$
	50μm size, 8μm reg., 50μm dia., 0V off.	15.55 ± 0.91		$0^{22} (1.78 \pm 0.002) \times 10^{17}$
	50μm size, 8μm reg., 150μm dia., 50V off.	17.00 ± 1.04		$\sqrt{(4.71 \pm 0.03) \times 10^{16}}$
	38 h Cesium Pre - Sputtering	16.79 ± 1.02	$(6.04 \pm 0.14) \times 10$	0^{21} (2.22 ± 0.07) × 10^{16}

Carbon implant simulation

Complex Cluster and BIC (boron interstitial) models

Boron activation model:

- ✓ Boron activation is mainly interstitial driven
- ✓ BIC (Boron Interstitial Cluster) model simulates the process via clustering reactions: $B_i I_j + V/I \rightarrow B_i I_{j-1}/B_i I_{j+1}$

$$B_i I_j + V/I \rightarrow B_i I_{j-1}/B_i I_{j+1}$$

$$B_i I_j + BI \rightarrow B_{i+1} I_{j+1}$$

- ✓ User demined cluster sizes to consider: **B**, **BI**, **BI**₂, **B**₂**I**₁, **B**₃**I**₁, **B**₃**I**₂
- ✓ Reaction rates can be set by user for each reaction (eg 0.3×10^{-10})

✓ Carbon activation model:

- ✓ The Carbon Cluster or Neutral Cluster Model sets initial cluster concentrations to 0 unless in amorphous regions
- ✓ No charged clusters are considered, solutions to $A_iI_j + I \leftrightarrow A_iI_{j+1}$ $A_iI_j + AI \leftrightarrow A_{i+1}I_{j+1}$ $A_iI_i + V \leftrightarrow A_iI_{i-1}$
- ✓ For Carbon, the following dedicated clusters are computed: C_3I_2 , C_4I_2 , C_4I_3 , C_5I_3 , C_5I_4

Boron/Carbon activation/deactivation models:

- ✓ The ComplexCluster Model considers cluster formation between dopants and Vacancies / Interstitials in Si
- ✓ Such process can be described generally as: $\mathbf{n_1} \times \mathbf{Imp.A} + \mathbf{n_2} \times \mathbf{Imp.B} + \mathbf{n_3} \times \mathbf{V/I} + \mathbf{n_4} \times \mathbf{e^-} \rightarrow \mathbf{A_{n1}B_{n2}}(\mathbf{V/I})\mathbf{n_5} + \mathbf{n_6}\mathbf{e^-}$
- ✓ In the carbon/boron case, the simplest reaction to consider is: $C + B + I \rightarrow BCI + e$
- ✓ A final charge of 1.0 is expected in such a case
- ✓ For the moment using the Initial concentration as provided after MC implantation by Crystal Trim

Comparative Studies - Efficiency

60

6e15 n_{ea}/cm² proton, -10°C

6e15 neg/cm2 proton, -30°C

100

Signal to Noise Ratio

-0.2

20

Phosphorus Test structures

Cis n-in-n 10¹⁵/cm² @130keV

- ✓ Fluence of 10^{16} n_{eq}/cm^2
- ✓ Thermal neutrons
- ✓ Cooled during storage and transport

- The bopping profile o the neutron irradiated samples seems unaffected
- Agreement within uncertainties
- Higher detection limit due to timing constraints induces deviations at lower part of the profiles

13 / 3 / 2023 E. L. Gkougkousis ULITIMA 2023 **31**

Radiation Effects

Acceptor removal, Defect Kinetics (simplified @)

- Incident particle hits silicon atom and created Vacancy (V) and Interstitial Silicon (Si_i)
- Si_i Propagates and can transform substitutional Boron/Carbon to B_i/C_i (interstitial),
- B_i/C_i can form several defects, but the most prominent in high resistivity silicon is:

o
$$Si_i + B_s \rightarrow B_i + O \rightarrow B_iO_i$$
 Change type of final defects but not amount of active implant

- Since B_i and C_i both compete for the same Si_i, if we introduce more Carbon we would expect to from less B_iO_i defects and more C_iO_i
- If we exchange Boron with a less mobile (heavier) atom (Ga), then we should also enhance C_iO_i defects instead of Ga_iO_i

•The Derive and Fit Method - I

- ✓ Probe active implant by depletion voltage
- ✓ Additional p-implantation gain layer creates secondary depletion region
- ✓ Mott–Schottky equation → leakage current variation at gain layer depletion
- ✓ Form of $\left|\frac{\partial I}{\partial V}\right|$ at depletion point corresponds to dopant transition function convoluted with instrument resolution (Gaussian X Gaussian)

✓ Depletion voltage determined Gaussian fit at depletion voltage for -10°C, -20°C & -30°C

WSS1005 1e14 II, BIRBY

$$V_d = \frac{\sum_{T=-10}^{-30} {}^{o}_{C} V_{d,T_i}}{n_T}$$

$$\delta V_d = \sqrt{V_{d.sys} + V_{d.stat}}$$

Average of fit sigma Standard deviation of V_d

- Independent Gaussian fits for each temperature
- Uncertainties estimated from propagation of fit sigma
- Fluences up to $3\cdot10^{15}$ n_{eq} /cm² in p⁺ and n⁰

•The Derive and Fit Method - II

- Linear dependence assumption between V_{GI} and active implant
- Normalized exponential reduction fit model on gain and V_{GL}

$$G(\%) = e^{-C_G \Phi}$$

- Linearity hypothesis tested with independent C_v and C_G fits full compatibility
- Constraints imposed on initial values to reflect charge measurements

Results

- Compatible acceptor removal coefficients between all implants
- Slight Ga advantage in p⁺ irradiation (23 GeV/c PS), higher mass reduces displacement probability in coulomb-only (far-field) interactions
- Quasi-identical performance for neutron irradiated (fast ~ 10MeV neutrons)
- Identical gain layer de-activation for all dopants with fluence

Acceptor Removal Coefficient					
С	δC				
Gallium					
8.25E-16	7.98E-17				
8.28E-16	1.16E-16				
1.41E-15	1.88E-16				
Boron + Carbon					
9.33E-16	7.78E-17				
8.85E-16	8.76E-17				
1.70E-15	2.23E-16				
Standard Boron					
9.69E-16	1.04E-16				
8.19E-16	1.35E-16				
1.96E-15	1.60E-16				
	C Sallium 8.25E-16 8.28E-16 1.41E-15 n + Carbon 9.33E-16 8.85E-16 1.70E-15 lard Boron 9.69E-16 8.19E-16				

•The Derive and Fit Method - II

Comparative Studies II - Stability

Self-trigger time:
$$\Delta T_{trig}^i = \frac{\sum_{j=1}^{n-1} (T_{j+1}^{trig} - T_j^{trig})}{n}$$
 X 1000 Self-trigger Rate:
$$F_{trig}^i = \frac{1}{\Delta T_{trigg}^i}$$
 Median of several rate measurements
$$\widetilde{F_{trig}} = \frac{F_{trig} \left\lfloor (\#k+1) \div 2 \right\rfloor}{2}$$

Uncertainty on trigger rate:

$$\delta \widetilde{F_{trig}}(\%) = \sqrt{\frac{(N_{over} + 1) \times (N_{over} + 2)}{(N+2) \times (N+3)} - \frac{(N_{over} + 1)^2}{(N+2)^2}}$$

Efficiency is a binary magnitude, Bayesian approach implemented

Dark Rate @ 750V, CNM 11486 1e15n

- ✓ Sensors with intrinsic gain present dark rate at higher biases
- ✓ Brownian thermal electrons following Poisson distribution
- ✓ As gain increases, the amount of charge necessary for an event to cross trigger threshold decreases
- ✓ Shot thermal noise increases with voltage
- ✓ Evaluation performed at the 2 fC threshold
- ✓ Values estimated from Poissonian fit on event frequency distribution (1000 events)

Breakdown Voltage

Current Multiplier

Exponential Fit: $I = b \cdot m^V$

Acceptance Criteria: $R^2 \geq 99\%$

Expected current: $I_{norm} = b \cdot m^{V_i}$

Current Multiplier: $M(V) = \left| \frac{I_{pad} + I_{GR}}{I_{norm}} \right|$

Breakdown: $V_{brw} \rightarrow M(V) > 2$

- ✓ Measure total leakage current (-10°C, -20°C, -30°C)
- ✓ Select a stable voltage range where behaviour follows exponential law
- ✓ Define common for all temperatures stable voltage range, after depletion and much before breakdown
- ✓ Perform exponential fit requesting $R^2 \ge 99\%$ (same range as in the gain reduction fits same constraints)
- ✓ Calculate the multiplier with respect to the expected current
- **✓** Define breakdown in multiplier value (Is it really exponential??)

Un-irradiated:
$$I_{pad}^{\Phi=0}=I_{s} imes\left(e^{rac{eV}{nkT}}-1
ight) imes G(e^{V},T)$$

Function of acceptor removal, exponential to fluence and voltage plus a linear term

Irradiated: $I_{pad}(\Phi) = (I_{pad}^{\Phi=0} + \alpha \Phi) \times G^*(e^V, T, \Phi)$

Breakdown Voltage

- ✓ Independent fit for each temperature
- ✓ Identical fit regions across all temperatures
- ✓ Identical fit regions for same fluence across all three implants

Constraints

Breakdown Voltage

Breakdown of PIN

Model

Un-irradiated breakdown

- ✓ Carbon and boron are compatible
- ✓ Gallium presents higher breakdown voltage (most possibly due to process variation)
- ✓ All implants compatible with sigmoid approach
- ✓ Highest breakdown voltage after irradiation independent of gain exclusively process dependent

Introduction il

Timing Concepts

Time Resolution:
$$\sigma_{tot}^2 = \sigma_{timewalk}^2 + \sigma_{jitter}^2 + \sigma_{conversion}^2 + \sigma_{Clock}^2$$

$$\frac{t_{rise}}{S/N} \approx \frac{N}{dV/dt}$$

$$\frac{t_{rise}}{S/t_{rise}}|_{RMS} \propto \left[\frac{N}{dV}\right]_{RMS}$$

$$\left(\frac{V_{thr}}{S/t_{rise}}\right|_{RMS} \propto \left[\frac{N}{dV}\right]_{RMS}$$

$$\left(\frac{V_{thr}}{S/t_{rise}}\right)^2$$

Where: S signal

N noise

V_{th} CFD threshold

t_{rise} rise time

Fast time resolution:

- ✓ Maximize slope (large fast signals)
- ✓ Minimize noise to minimize jitter
- ✓ Implement time walk correction (CFD, ToT, ToA, ect)
- ✓ Uniform field with to minimize distortion term

Thin silicon sensors with internal gain

Noise and S/N Ratio

Collected Charge - Boron

Collected Charge – Boron + Carbon

Sensor R&D

LGADs - Charge collection

- ✓ Unirradiated gain tuned to be identical for boron/gallium/carbon implanted sensors fro accurate comparison
- ✓ Irradiated Carbon infused sensors present higher charge at lower HV
- ✓ Gallium implanted sensors are 10% worse than standard process boron
- ✓ Carbon is 20% better across the spectrum with respect to boron

Collected Charge – Gallium

Dark Rate

Concepts & Methods

- ✓ Sensors with gain present dark rate at high enough voltages
- ✓ Dark rate events result of thermal movement and random in nature
- ✓ Follow the Poisson distribution

Quantification

- ✓ Study the time between consecutive self-triggering
- ✓ Use mean of 4 events (3 values) to reject cosmic background

Self-trigger time:
$$\Delta T_{trig}^{i} = \frac{\sum_{j=1}^{n-1} (T_{j+1}^{trig} - T_{j}^{trig})}{n}$$
Self-trigger Rate:
$$R_{trig}^{i} = \frac{1}{\Delta T_{trigg}^{i}}$$

Signal Evolution with bias in LGADs

Signal FFT - 1e14n, -30C

Main Development Points

"no-field" region

- Deeper JTE implant with respect to multiplication layer
- ➤ Effective no-field region created next to the boarder
- As voltage increase and gain field become more significant, "no-filed" region decreases
- ➤ Effect will never completely disappear
- ➤ In a perfect approach, JTE would be:
 - exactly as deep as gain layer
 - concentration gradient tuned to match gain layer

Nominal IP	Voltage	Measured IP	IP efficiency (%)
25 μm	45	103.0 ± 1.3	2,2
	50	91.8 ± 1.3	10,1
	60	69.2 ± 2.4	17,4
15 μm	40	111.9 ± 4.9	14.8
	60	70.2 ± 4.8	29.4
45 μm	120	68.4 ± 4.6	55.1

Geometric efficiency

Inter-pad region, i-LGADs

- ➤ Approached based on non-segmentation of gain layer
- ➤ Double sided process with <u>NO</u> possibility for support structures (thin sensors extremely difficult)
- ➤ Multiplication layer multiplies carriers
- Two contribution signal, primary electron collection and subsequent multiplication of holes
- \blacktriangleright Distance between two signals depends on drift time, thinner sensors ($<50\mu m$) should be usable for time

- ➤ Typical pulse duration ~ 10 20 times of equivalent thickness LGAD
- Very good for timing, bad in SNR terms
- Need too go to 50 μm thick devices for any realistic applications

Inter-pad area

Inactive regions

- ✓ High Field region in the gain layer
- ✓ Field needs to be controlled in pad edges where values increase due to geometry
- ✓ Introduction of electrical isolation implant JTE (Junction Termination Extension)
- ✓ Typical JTE geometries introduce 50 150 µm inactive area between adjacent gain layers
- ✓ Dead area varies with field (bias voltage) in a non-linear way (see next slide)
- ✓ Overall fill factor reduction at 1mm pads:

JTE size	Fill Factor reduction
50μm	~ 10 %
150μm	~ 30 %

13 / 3 / 2023 E. L. Gkougkousis ULITIMA 2023 **5C**

Inter-pad area

Inter-pad region, Ti-LGADs

- ➤ Approach based on removing JTE completely
- ➤ Using trenches as electron diffusion barrier and field containment (JTE and p-stop)
- ➤ DRIE trenches comparable to SIPM processes ~ I µm thick, filled with oxide
- Relatively understood process
- Based on the distance from the edge an opposite polarity signal present on adjacent pad (probably dependent on trench depth)

13 / 3 / 2023 E. L. Gkougkousis ULITIMA 2023 53

Inter-pad area

Deep Junction LGADs

- Based on the non-segmentation of the gain region
- Move the gain layer away from the surface and deeper into the substrate
- ightharpoonup Requires not one but two implants in a relatively deep region ($\sim 5~\mu m$) from surface
- Top implant has to be lower concentration than deeper gain implants, leading to deposition rather than impanation techniques

Status and issues

- Opposite sign signal on adjacent pad
- ➤ Only theoretical simulations from UCSC, BNL will work on a process
- Susceptible to crosstalk, but dependent probably on gain layer positioning
- > Increase in process complications

Implantation Parameters – Energy 1

1E-01

Energy (MeV)

1E+00

Mobility & Trapping

Mobility & Trapping

N_{eff} – Dynamic Model

Radiation damage modeling			
Terms	Acceptor Introduction	$N_{acc.}^{con.}(t) = g_{C_A} \times \int_0^t \Phi_{eq.}(\tau) \partial \tau$	
Constant Damage Terms	Donor Introduction	$N_{don.}^{con.}(t) = g_{C_D} \times \int_0^t \Phi_{eq.}(\tau) \partial \tau$	
	Acceptor Removal	$N_{acc.}^{rem.}(t) = f_{c_A} \times N_{eff.}(0) \left(1 - e^{-c_{c_A} \int_0^t \Phi_{eq.}(\tau) \partial \tau} \right)$	
	Donor Removal	$N_{don.}^{rem.}(t) = f_{c_D} \times N_{eff.}(0) \left(1 - e^{-c_{c_D} \int_0^t \phi_{eq.}(\tau) \partial \tau}\right)$	
Short term annealing	Acceptor Reduction	$N_{acc.}^{short.}(t_i) = g_A \times \frac{\int_{t_{i-1}}^{t_i} \Phi_{eq.}(\tau) \partial \tau}{\delta t} \times \frac{\left(1 - e^{-k_a(T_i) \times \delta t}\right)}{k_a(T_i)} + N_{acc.}^{short.}(t_{i-1}) \times e^{-k_a(T_i) \times \delta t}$	
Long term annealing	Max Introducible Acceptors	$N_{acc.}^{Max.long.}(t_i) = g_Y \times \int_{t_{i-1}}^{t_i} \Phi_{eq.}(\tau) \partial \tau / \delta t \times \frac{\left(1 - e^{-k_Y(T_i) \times \delta t}\right)}{k_Y(T_i)} + N_{acc.}^{Max.long.}(t_{i-1}) \times e^{-k_Y(T_i) \times \delta t}$	
	Acceptor Introduction	$\begin{split} N_{acc.}^{long.}(t_i) &= N_{acc.}^{long.}(t_{i-1}) + \\ & \frac{\int_{t_{i-1}}^{t_i} \Phi_{eq.}(\tau) \partial \tau}{k_{I}(T)} \times \frac{\int_{t_{i-1}}^{t_i} \Phi_{eq.}(\tau) \partial \tau}{k_{I}(T)} \times \left(k_{I}(T) \times t + e^{-k_{I}(T)t} - 1\right) + \\ & N_{acc.}^{Max.long.}(t_i) \times \left(1 - e^{-k_{I}(T)t}\right) \end{split}$	

13 / 3 / 2023 E. L. Gkougkousis ULITIMA 2023 **55**