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•Introduction I

✓ Invented at CNM, initially considered for tracking by IFAE, proposed for timing by UCSC

✓ HPK, CNM, FBK, MiCRON, BNL (USA), NDL (China), CiS, Teledyne (UK)

✓ Requires precise diffusion control

for layer thickness:

✓ Thin highly doped n-well layer

(~ 1 – 1.5 μm)

✓ Gain layer ~ 2 μm

✓ p-stop ~3 -3.5 μm

✓ Different gain layer species

possible:

✓ Boron (standard)

✓ Gallium

✓ Boron +Carbon

➢ 4” Si-on-Si wafers (High Resistivity ~2 kΩ•cm)
➢ 50 μm thickness on 250 μm support wafer
➢ Different implantation species 
➢ Single diodes of active area 0.7 x 0.7 mm
➢ 5 Neutron and proton fluences tested up to 

6 × 1015 neq/cm2

Standard Boron
Boron + Carbon Spray
Gallium

ULITIMA 2023



Doping Profiles - Carbon

E. - L. Gkougkousis:  - 17th Trento workshop (2022)
“Detailed process characterization of carbonated LGADs through 

Secondary Ion Mass Spectroscopy”
•Introduction III

Element
Sensitivity 

(atoms/cm3)

Carbon (2.22 ± 0.08) × 1016

Boron (1.35 ± 0.58) × 1014

Gain Layer

P-Spray

Silicon interface

Best ever recorded 
resolution
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https://indico.cern.ch/event/1096847/contributions/4742738/


Post-Irradiation Doping Profiles

•Introduction IV E. - L. Gkougkousis:  28th RD50 Workshop, Torino)
“Neutron Irradiated doping profile evaluation”

June 2016

✓ SiMS on irradiated boron implanted structures

with high sensitivity

✓ High (> 2 kOhm×cm) and low resistivity

samples (< 2 Ohm×cm) p-type substrates tested

under both proton and neutron irradiation (high

resistivity is non-oxygenated, low is oxygenated)

✓ Up to fluences of 1×1016 neq/cm2 no dopant

redistribution was observed

✓ Boron DOES NOT diffuse (even as interstitial)

under standard operation in sensors, neither does

phosphorus
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https://agenda.infn.it/event/11109/contributions/7070/


•Radiation Effects I
G. Lindstrom et al., NIM A 466(2001) 308-326

“Radiation damage in silicon detectors“

Radiation damage modeling
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Acceptor Introduction
𝑑𝑁𝑎𝑐𝑐.

𝑐𝑜𝑛.(𝑡)

𝑑𝑡
= 𝑔𝐶𝐴 ×Φ𝑒𝑞(t)

Donor Introduction
𝑑𝑁𝑑𝑜𝑛.

𝑐𝑜𝑛.(𝑡)

𝑑𝑡
= 𝑔𝐶𝐷 ×Φ𝑒𝑞(t)

Acceptor Removal
𝑑𝑁𝑎𝑐𝑐.

𝑟𝑒𝑚.(𝑡)

𝑑𝑡
= −𝑐𝐶𝐴 × Φ𝑒𝑞(t) × 𝑁𝑎𝑐𝑐.

𝑟𝑒𝑚.(𝑡)

Donor Removal
𝑑𝑁𝑑𝑜𝑛.

𝑟𝑒𝑚.(𝑡)

𝑑𝑡
= −𝑐𝐶𝐷 ×Φ𝑒𝑞(t) × 𝑁𝑎𝑐𝑐.

𝑟𝑒𝑚.(𝑡)

Short term 
annealing

Acceptor Reduction
𝑑𝑁𝑎𝑐𝑐.

𝑠ℎ𝑜𝑟𝑡.(𝑡)

𝑑𝑡
= 𝑔𝐴 × Φ𝑒𝑞 t − 𝑘𝐴(𝑇) × 𝑁𝑎𝑐𝑐.

𝑠ℎ𝑜𝑟𝑡. (𝑡)

Long term 
annealing

Max Introducible Acceptors 𝑑𝑁𝑎𝑐𝑐.
𝑀𝑎𝑥. 𝑙𝑜𝑛𝑔.

(𝑡)

𝑑𝑡
= 𝑔𝑦 × Φ𝑒𝑞 t − 𝑘𝑌(𝑇) × 𝑁𝑎𝑐𝑐.

𝑀𝑎𝑥. 𝑙𝑜𝑛𝑔.
(𝑡)

Acceptor Introduction 𝑑𝑁𝑎𝑐𝑐.
𝑙𝑜𝑛𝑔.

(𝑡)

𝑑𝑡
= 𝑘𝑌(𝑇) × 𝑁𝑎𝑐𝑐.

𝑀𝑎𝑥. 𝑙𝑜𝑛𝑔.
(𝑡)
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The Hamburg Neff Model

ULITIMA 2023

https://inspirehep.net/literature/604346


• Radiation Effects II

Four main disruptive mechanisms:

ൗ1 𝜏 = 𝛽 × Φ

𝑁𝐴𝑐𝑡. = 𝑔𝐴 × Φ

Substrate

The ROSE 
collaboration

1. Reduced primary charges induced in substrate

2. Acceptor re-introduction rate

𝑁𝐺Φ = 𝑓 × 𝑁𝐺0e
−𝑐Φ

Gain reduction larger than 
anticipated from acceptor removal

Gain Layer

3. Reduced active implant through acceptor removal

4. Reduced mobility within gain layer through trapping 

Acceptor removal, Defect Kinetics (simplified ☺ )

Face centered 
Cubic Si (2-atom 

base)

Interaction with 
incoming 
particle

Interstitial 
Diffusion

Substitutional 
Replacement

vacancy

Interstitial
Si

Radiation Substitutional B,C

Interstitial 
B, C

Integrated 
interstitial

Rad + Sis → Sii + Bs → Bi + O → BiOi

Rad + Sis →Sii + Cs → Ci + O → CiOi

Gain layer 
de-activation

Charge 
trapping

too many 
interstitials,

cannot modify

Can be engineered 
by oxygen trapping
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E. - L. Gkougkousis:  TIPP2021, May 2021 
“Comprehensive technology study of radiation hard 

LGADs”

https://indico.cern.ch/event/981823/contributions/4293572/


𝑉𝑑 =
σ
𝑇=−10 𝑜𝐶

−30 𝑜𝐶
𝑉𝑑,𝑇𝑖

𝑛𝑇

δ𝑉𝑑 = 𝑉𝑑,𝑠𝑦𝑠 + 𝑉𝑑,𝑠𝑡𝑎𝑡

Average of fit 
sigma

Standard 
deviation of Vd

- Independent 
Gaussian fit for 
temperature

- Uncertainties 
estimated from 
propagation on fit 
sigma

- Fluences up to 3•1015 

neq/cm2 in p+ and n0

✓ Probe active implant via depletion voltage

✓ Additional p-implantation gain layer creates secondary depletion region

✓ Mott–Schottky equation    → leakage current variation at gain layer 

depletion

✓ Form of Τ𝜕𝐼 𝜕𝑉 at depletion point corresponds to dopant transition function 

convoluted with instrument resolution (Gaussian X Gaussian)

✓ Depletion voltage determined Gaussian fit at depletion voltage for -10oC, -

20oC & -30oC
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•The Leakage Current Transition Method (LCT) - I
E. - L. Gkougkousis et al.: “Comprehensive technology 

study of radiation hard LGADs”
J. Phys.: Conf. Ser. 2374 012175

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjClp7jzNj9AhUbT6QEHeF0CP4QFnoECAoQAQ&url=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F1742-6596%2F2374%2F1%2F012175%2Fpdf&usg=AOvVaw2ivpE_5k3cHOU0kNN0fggd


𝐺(%) = 𝑒−𝐶𝐺Φ

Acceptor Removal Coefficient

Gallium (8.25 ± 0.80) ×10-16

Boron + Carbon (9.33 ± 0.78) ×10-16

Boron (9.69 ± 1.04) ×10-16

• Linear dependence assumption between VGL and active implant
• Normalized exponential reduction fit model on gain and VGL

• Linearity hypothesis tested with independent  Cv and CG fits –
full compatibility

• Constraints imposed on initial values to reflect charge 
measurements

Results

• Compatible acceptor removal coefficients between all 
implants

• Slight Ga advantage in p+ irradiation (23 GeV/c PS), higher 
mass reduces displacement probability in coulomb-only 
(far-field) interactions

• Quasi-identical performance for neutron irradiated (fast ~ 
10MeV neutrons)

• Identical gain layer de-activation for all dopants with 
fluence

•The Leakage Current Transition Method (LCT) - I

8E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



•The other side of the coin – FBK Carbonated

9E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023

M. Ferrero et al.: “Radiation resistant LGAD design”
NIMA, Volume 919, 1 March 2019, Pages 16-26

✓ Carbon is directly implanted at the gain layer

only with comparable concentrations

✓ An improvement is seen on the acceptor

removal coefficient by a factor of 2

What does this mean?

✓ Carbon only helps in

acceptor removal when

close to boron

✓ Irradiated Implants

do not diffuse (to

the nm level)

Acceptor removal 

is a local process

✓ The fact that proton and neutron

irradiations fit in the same curve

means that this is a point defect

sensitive effect

https://reader.elsevier.com/reader/sd/pii/S0168900218317741?token=6784B2793586FBB0F94E1CF043AA4760A9C0CDD540A785AE49DEB3FE9D2B98E282F42DFA0D7A6799803420FA7FBCC7F8&originRegion=us-east-1&originCreation=20230313160658
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjClp7jzNj9AhUbT6QEHeF0CP4QFnoECAoQAQ&url=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F1742-6596%2F2374%2F1%2F012175%2Fpdf&usg=AOvVaw2ivpE_5k3cHOU0kNN0fggd


• Radiation Hardness

Gain Layer Engineering
✓ First approximation: gain equivalent to charge in 

parallel plane capacitor:

G~ea*d     

d: distance (gain layer thickness)

a function equivalent to inverse of mean free path (1/λ)

✓ In irradiated silicon, λ depends on fluence, temperature 

and field

✓ Higher fields mean shorter distances to acquire same 

kinetic energy

✓ Presence of scattering centres has to be compensated 

with higher fields

10E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



•Comparative Current to Gain Method (CG2C) - I

✓ Acceptor removal only gives information about active 

dopant, not gain

✓ Gain also depends on trapping levels & doping profiles

✓ Effects after irradiation for different defect concentrations 

✓ For same amount of acceptor removal, different gain 

reduction expected 

𝑓 𝑉,Φ =
𝐼𝑝𝑎𝑑

𝐼𝐺𝑅

Normalize with 
uneradicated

Geometry factor

Generation Current

Gain Current

Guard Ring Leakage 
Current

Pad Leakage Current

𝑓 Φ

𝑓 Φ = 0
~𝐺 𝑒𝑉, 𝑇,Φ

𝐼𝑝𝑎𝑑
Φ=0 = 𝑺 × 𝑰𝒔× 𝒆

𝒆𝑽
𝒏𝒌𝑻 − 𝟏 × 𝐆 𝐞𝐕, 𝐓, 𝟎 𝐼𝑝𝑎𝑑 Φ = 𝑺 × (𝐼𝐺𝑅

Φ=0+𝜶𝜱) × 𝐆 𝐞𝐕, 𝐓,𝚽

𝐼𝐺𝑅
Φ=0 = 𝑰𝒔 × 𝒆

𝒆𝑽
𝒏𝒌𝑻 − 𝟏

𝐼𝐺𝑅 Φ = 𝐼𝐺𝑅
Φ=0 + 𝛂𝚽

Before Irradiation After Irradiation

1. GR and pad on same substrate, all non-gain related irradiation effects can be normalized

2. Assumption that differences between GR n-type implant and pad n-type implant have minimal 

effects

If we divide the two then: 

= 𝒇 𝑽,𝚽

Gain Current
Geometry factor

Expected substrate 
current increase

11E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



G = 1
No gain

✓ IGR/IPAD linear at the semi-log plane

✓Gain Coefficient probed by slope of linear fit

✓Different fits per temperature, reputed at -10 oC, -20 oC and -30 oC

× 6 
(3 implants, 

n and p irradiated)

൘
𝑰𝒑𝒂𝒅

𝑰𝑮𝑹
= 𝒎× 𝒂𝑽

•Comparative Current to Gain Method (CG2C) - II

12E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023

E. - L. Gkougkousis: “Review of neutron irradiated 6” SoI LGAD 
sensors CNM 11486”

35th RD50 Workshop, November 2019

https://indico.cern.ch/event/855994/contributions/3636943/attachments/1946950/3230575/RD50_CNM11486.pdf


Gain Reduction Coefficient
Irrad. Type C ± δC

Gallium
n0 (3.01 ± 0.9) × 10-14

p+ (2.02 ± 0.11) × 10-14

Boron + Carbon
n0 (2.57 ± 1.1) × 10-15

p+ (1.37 ± 0.24) × 10-14

Standard Boron
n0 (2.25 ± 0.39) × 10-14

p+ (2.25 ± 0.28) × 10-14

Results

• Gallium and Boron perform similarly

• Carbon + Boron is up to 2 times better in proton 
and up to 7-8 times better in neutron irradiation

• Significant variation with implant type

• Gain reduction coefficients are up to 10 x the 
previously estimated acceptor removal

•Comparative Current to Gain Method (CG2C) - III

13E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



•Collected Charge I

14E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023

✓ Each point corresponds to MPV of Landau x Gauss fit on 5k recorded events
✓ Measurements repeated for -10oC, -20oC & -30oC (see the backup)
✓ Gallium yields always 20% less charge for same voltage, carbonated 20% more
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-30oC

2D optimization plot – 0.5% binning

CFD Level optimization

H
L-

LH
C

 R
an

ge

1. Similar behavior in terms of signal shape on all implants

2. Time resolution follow charge trend

3. Charge vs σt identical for all gain layer variations

-30oC

15E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023

•Time Resolution

E. - L. Gkougkousis: “Acceptor removal and gain Reduction in 
proton and neutron irradiated LGADs”

36th RD50 Workshop, June 2020

https://indico.cern.ch/event/918298/contributions/3880598/


• Signal Analysis

The importance of Bandwidth

60 % less amplitude
20 % more charge

16E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



Under-depleted 
region

No-gain region

Asymptotic point ~ 250 MHz

17E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023

• Signal Analysis

FFT

Fluence

GainAsymptotics move to higher 
and higher frequencies as 
gain decreases and fluence 
increases

✓ FFT vs Voltage presents an asymptotic 
behavior towards a frequency

✓ Asymptotic frequency depends on 
fluence and remaining gain

✓ Signal frequency increases with voltage 
and decreases on the onset of 
multiplication



• Sensor Stability

Dark Rate

18

✓ All sensors with gain 

present dark rate at 

high field values

✓ Dark rate events result 

out of  thermally 

induced electron-hole 

pairs drifting picked up 

by the field

✓ Random in nature, 

follow a Poisson 

distribution

✓ An inverted s-curve 

study for each sensor 

defines the stable 

region or the 

acceptable level of shot 

noise.

E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



• Stability vs Threshold

Dark Rate

19

• Un-irradiated HPK P2

• Breakdown ~156 V

• Measured at room temp

• Different Constant threshold 

triggers (1.8 – 5.4 fC) applied

• Bayesian Uncertainties

• Max saturation rate 230 kHz

▪ Sensor far from breakdown

▪ Leakage current not demonstrate  

significant variation

▪ Stationary leakage current at 

exponential rate increase, 

breakdown over 1e5 Hz

Threshold effect

Leakage Current effect

E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



• Efficiency
Head Room
➢ Measurements with radioactive 90Sr source

➢ Define stable operation points satisfying the 

following conditions:

Sensor not in breakdown

Mean field inside sensor < 13.4 V/μm

Autro-trigger rate < 1% of source trigger 

20E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



•Single Event Burn-Out
Catastrophic failure
• Catastrophic breakdown events occur at mean bias voltages of ~ 12 V/μm for planar structures
• Effect observed on LGADs and planar pixels after irradiation
• High energy deposition close to a tap cluster creating a highly localized field variation which leads to 

high gain
• Observed in SPS test beams in 2017 and verified by lasers at ELI beamlines

21

CNM LGAD Electron microscopy 
with crater traversing substrate

E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



•Future developments

22E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023

HAB = Half Activated Boron

• Stop O2 boron deactivation 

pathway by increasing amount of 

non-activated boron.

• Bi will capture the Oi before it 

encounters a substitutional boron

• Extremely promising first results

Compensation

• Increase boron concentration but 

add some type of n-implant to 

maintain Neff to acceptable levels

• If CD < CA additional acceptors 

are disengaged to participate to 

the Neff with irradiation

• First results not promising

Non-irrad 6e14

3e15

K. Hara et al.: “Improvement of timing resolution and 
radiation tolerance for finely segmented AC-LGAD sensors”

Trento 2023

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjClp7jzNj9AhUbT6QEHeF0CP4QFnoECAoQAQ&url=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F1742-6596%2F2374%2F1%2F012175%2Fpdf&usg=AOvVaw2ivpE_5k3cHOU0kNN0fggd


•Future developments
Removal Coefficients

Original doping 
concentration

Re-Introduction rate gc

✓ > 0 primarily acceptor introduction
✓ < 0 primarily donor introduction

Acceptor removal part

Removable Fraction

𝑁𝐶. 𝛷𝑒𝑞. = 𝑔𝑐 × 𝛷𝑒𝑞. − 𝑓𝑐 ×𝑁𝑒𝑓𝑓. 0 1 − 𝑒−𝑐𝐴𝛷𝑒𝑞.

Acceptor Removal 
Coefficient

✓ Removal coefficient dependent on initial acceptor

concentration

✓ Almost complete removal for high Neff, ~ 40 % removal

for high resistivity substrates

23E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023

M. Moll: “Displacement Damage in Silicon Detectors
for High Energy Physics”

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 8, 

𝒄𝑨 = 𝑨 ×𝑵𝒆𝒇𝒇. 𝟎
−𝑩

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjClp7jzNj9AhUbT6QEHeF0CP4QFnoECAoQAQ&url=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F1742-6596%2F2374%2F1%2F012175%2Fpdf&usg=AOvVaw2ivpE_5k3cHOU0kNN0fggd
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjClp7jzNj9AhUbT6QEHeF0CP4QFnoECAoQAQ&url=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F1742-6596%2F2374%2F1%2F012175%2Fpdf&usg=AOvVaw2ivpE_5k3cHOU0kNN0fggd


•Future developments
Alternative dopants
✓ Radiation damage lead to acceptor removal

though defect kinematics

✓ Modify gain layer implants to generate beneficial

defects for gain (gain regulation):

• Lithium co-implantation:
• Boron with Lithium co-implantation 

demonstrates better neutron radiation 
hardness

• Replace Boron with Indium
• Indium higher mass and lower reaction 

cross-section expected to generated less Oi

defect clusters

✓ Implantation energy and doping profiles already
optimized via TCAD simulations

• Lithium co-implantation ONLY on p-implant layers

• Lithium is n-type but in low doses should not impact p layer
• Proven to improve radiation hardness of solar cells after 

1MeV neutron irradiation
• Lowers annealing temperature when implanted in substrate
• Defect engineering at low temperatures E. Oliviero et Al. 

(link)
• Original Solar cell study Weinberg et Al. (link)

24E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023

E. – L. Gkougkousis: “Parametric process optimization for Indium, 
Gallium and Boron dopants using TCAD simulation modelling ” 

16th Trento Workshop 

https://doi.org/10.1063/1.4793507
https://patents.google.com/patent/US4608452
https://indico.cern.ch/event/983068/contributions/4223170/
https://indico.cern.ch/event/983068/contributions/4223170/


• Conclusions

Thoughts and discussion

25E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



•Backup

26E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



•Standard Candle Process

Gallium Nominal Parameters

Nominal Dose Anealing Temp Anealing Time Implant. Energy

[atoms/cm2] [oC] [min] [KeV]

1,00E+14 1100 180

195

1,00E+14 1100 100

1,00E+14 1100 100

1,00E+15 1100 180

1,00E+15 1100 100

Metallization 
layer

Oxide layer

Silicon Substrate

Target optimization parameters

✓ Implantation energy

✓ Implantation dose

✓ Screen oxide layer thickness

✓ Diffusion Time

✓ Tilt Angle

✓ New process optimization require standard profile as a 
reference

✓ Use Secondary Ion Mass Spectroscopy (SiMS )profiles 
form LGAD gain layers

✓ Target Boron and Gallium process (well understood)

✓ Accuracy of 1e15/cm3

27E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023



Gaussian fit on point projection to 
estimate resolution form σ

Beam Parameters
Abrasion Speed 

v (nm/sec)
Scaling Factor

RSF (atoms/cm3)
Sensitivity 

S (atoms/cm3)

100μm size, 33μm reg., 150μm dia., 0V off. 4.35 ± 0.20 (2.77 ± 0.06) × 1022 (4.85 ± 0.11) × 1016

100μm size, 8μm reg., 150μm dia., 0V off. 4.43 ± 0.21 (3.61 ± 0.08) × 1022 (1.80 ± 0.01) × 1017

80μm size, 8μm reg., 150μm dia., 0V off. 6.93 ± 0.34 (2.62 ± 0.06) × 1022 (1.48 0.005) × 1017

60μm size, 8μm reg., 150μm dia., 0V off. 12.11 ± 0.65 (1.82 ± 0.04) × 1022 (7.89 ± 0.02) × 1016

50μm size, 8μm reg., 150μm dia., 0V off. 14.64 ± 0.84 (1.45 ± 0.03) × 1022 (7.44 ± 0.01) × 1016

50μm size, 8μm reg., 50μm dia., 0V off. 15.55 ± 0.91 (1.05 ± 0.02) × 1022 (1.78 ± 0.002) × 1017

50μm size, 8μm reg., 150μm dia., 50V off. 17.00 ± 1.04 (5.56 ± 0.14) × 1021 (4.71 ± 0.03) × 1016

38 h Cesium Pre - Sputtering 16.79 ± 1.02 (6.04 ± 0.14) × 1021 (2.22 ± 0.07) × 1016

𝐶 = 𝑅𝑆𝐹 ×
𝑖𝑖
𝑐𝑎𝑙.

𝑖𝑀
𝑐𝑎𝑙.

δ𝐶 =
𝑖𝑖
𝑐𝑎𝑙.

𝑖𝑀
𝑐𝑎𝑙.

× δ𝑅𝑆𝐹

2

+
𝑅𝑆𝐹

𝑖𝑀
𝑐𝑎𝑙.

×
1

𝑖𝑖
𝑐𝑎𝑙.

2

+ 𝑅𝑆𝐹 ×
𝑖𝑖
𝑐𝑎𝑙.

𝑖𝑀
𝑐𝑎𝑙. 2

×
1

𝑖𝑀
𝑐𝑎𝑙.

2

✓ The implant concentration is estimated in each case 

following:

✓ Without any additional optimization, a 

resolution of (4.71 ± 0.03) × 1016 atoms/cm3

can be achieved

✓ The resolution increased for smaller raster 

sizes while maintain same beam intensity, 

resulting in higher observant signal intensity

✓ Downside of such an approach higher abrasion 

speed, lees points

✓ In essence this is the equivalent in 

measurement terms of statistical smoothing of 

profiles. 

✓ Points recorded every 17 nm, limit of feature 

size one can probe for achieving such 

resolution

Sensitivity Optimization

•Carbon Calibration Profiles
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𝐶 + 𝐵 + 𝐼 → 𝐵𝐶𝐼 + 𝑒

✓ Boron/Carbon activation/deactivation models:

✓ The ComplexCluster Model considers cluster formation between dopants and Vacancies / Interstitials in Si

✓ Such process can be described generally as: n1×Imp.A + n2×Imp.B + n3×V/I + n4×e- →An1Bn2(V/I)n5+n6e
-

✓ In the carbon/boron case, the simplest reaction to consider is: 

✓ A final charge of 1.0 is expected in such a  case

✓ For the moment using the Initial concentration as provided after MC implantation by Crystal Trim

✓ Carbon activation model:

✓ The Carbon Cluster or Neutral Cluster Model sets initial cluster concentrations to 0 unless in 

amorphous regions 

✓ No charged clusters are considered, solutions  to 

✓ For Carbon, the following dedicated clusters are computed: C3I2, C4I2, C4I3, C5I3, C5I4

✓ Boron activation model:

✓ Boron activation is mainly interstitial driven 

✓ BIC (Boron Interstitial Cluster) model simulates the process via clustering reactions:    Bi Ij + V/I → Bi Ij -1/ Bi Ij +1

Bi Ij + BI → Bi+1 Ij +1

✓ User demined cluster sizes to consider: B, BI, BI2, B2I1, B3I1, B3I2 

✓ Reaction rates can be set by user for each reaction (eg 0.3 × 10-10 )

Complex Cluster and BIC (boron interstitial) models

•Carbon implant simulation
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•Comparative Studies - Efficiency
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•Radiation Effects

Acceptor removal, Defect Kinetics (simplified ☺ )

▪ Incident particle hits silicon atom and created Vacancy (V) and 

Interstitial Silicon (Sii)

▪ Sii Propagates and can transform substitutional Boron/Carbon to Bi/Ci

(interstitial), 

▪ Bi/Ci can form several defects, but the most prominent in high 

resistivity silicon is:

Sii + Bs → Bi + O → BiOi

Sii + Cs → Ci + O → CiOi

• Since Bi and Ci both compete for the same Sii, if we introduce more 

Carbon we would expect to from less BiOi defects and more CiOi

• If we exchange Boron with a less mobile (heavier) atom (Ga), then we 

should also enhance CiOi defects instead of GaiOi

Incident 
particle

o
r

Change type of final 
defects but not 

amount of active 
implant
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•The Derive and Fit Method - I

6V
15V

20V

25V

𝑉𝑑 =
σ
𝑇=−10 𝑜𝐶

−30 𝑜𝐶
𝑉𝑑,𝑇𝑖

𝑛𝑇

δ𝑉𝑑 = 𝑉𝑑.𝑠𝑦𝑠 + 𝑉𝑑.𝑠𝑡𝑎𝑡

Average of fit 
sigma

Standard 
deviation of 

Vd

fluenc
e

- Independent Gaussian fits for each temperature
- Uncertainties estimated from propagation of fit sigma
- Fluences up to 3•1015 neq/cm2 in p+ and n0

✓ Probe active implant by depletion voltage

✓ Additional p-implantation gain layer creates secondary depletion region

✓ Mott–Schottky equation    → leakage current variation at gain layer depletion

✓ Form of Τ𝜕𝐼 𝜕𝑉 at depletion point corresponds to dopant transition function convoluted 

with instrument resolution (Gaussian X Gaussian)

✓ Depletion voltage determined Gaussian fit at depletion voltage for -10oC, -20oC & -

30oC

Gkougkousis V., RD50 Workshop Talk, November 2019: 
link

33E. L. Gkougkousis13 / 3 / 2023 ULITIMA 2023

https://indico.cern.ch/event/855994/contributions/3636943/attachments/1946950/3230575/RD50_CNM11486.pdf


•The Derive and Fit Method - II

𝐺(%) = 𝑒−𝐶𝐺Φ

Acceptor Removal Coefficient
Irrad. Type C δC

Gallium
Combined 8.25E-16 7.98E-17
n0 irradiated 8.28E-16 1.16E-16
p+ irradiated 1.41E-15 1.88E-16

Boron + Carbon
Combined 9.33E-16 7.78E-17
n0 irradiated 8.85E-16 8.76E-17
p+ irradiated 1.70E-15 2.23E-16

Standard Boron
Combined 9.69E-16 1.04E-16
n0 irradiated 8.19E-16 1.35E-16
p+ irradiated 1.96E-15 1.60E-16

• Linear dependence assumption between VGL and active implant
• Normalized exponential reduction fit model on gain and VGL

• Linearity hypothesis tested with independent  Cv and CG fits – full 
compatibility

• Constraints imposed on initial values to reflect charge measurements

Results

• Compatible acceptor removal 
coefficients between all implants

• Slight Ga advantage in p+ irradiation 
(23 GeV/c PS), higher mass reduces 
displacement probability in 
coulomb-only (far-field) 
interactions

• Quasi-identical performance for 
neutron irradiated (fast ~ 10MeV 
neutrons)

• Identical gain layer de-activation 
for all dopants with fluence
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•The Derive and Fit Method - II
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•Comparative Studies II - Stability

ΔT𝑡𝑟𝑖𝑔
𝑖 =

σ𝑗=1
𝑛−1(𝑇𝑗+1

𝑡𝑟𝑖𝑔
−𝑇𝑗

𝑡𝑟𝑖𝑔
)

𝑛

F𝑡𝑟𝑖𝑔
𝑖 =

1

ΔT𝑡𝑟𝑖𝑔𝑔
𝑖

෫𝐹𝑡𝑟𝑖𝑔 =
𝐹𝑡𝑟𝑖𝑔⎿ #𝑘+1 ÷2⏌

+ 𝐹𝑡𝑟𝑖𝑔⎾ #𝑘+1 ÷2⏋

2

Self-trigger time:

Self-trigger Rate:

Median of several rate

measurements

X 1000

Uncertainty on trigger rate:

Sigmoid Dark rate Fit:

Max, recordable 
rate

Inst. saturation 
point

Baseline trigger rate
(noise, radioactivity)

50% of maximum 
voltage point

෫𝛿𝐹𝑡𝑟𝑖𝑔(%) =
Νover + 1 × Νover + 2

Ν + 2 × Ν + 3
−

Νover + 1 2

Ν+ 2 2

Efficiency is a binary magnitude, Bayesian approach implemented

✓ Sensors with intrinsic gain present dark rate 

at higher biases

✓ Brownian thermal electrons following 

Poisson distribution

✓ As gain increases, the amount of charge 

necessary for an event to cross trigger 

threshold decreases

✓ Shot thermal noise increases with voltage

✓ Evaluation performed at the 2 fC threshold 

✓ Values estimated from Poissonian fit on 

event frequency distribution (1000 events)
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•Breakdown Voltage
Current Multiplier ✓ Measure total leakage current (-10oC, -20oC, -30oC)

✓ Select a stable voltage range where behaviour follows exponential 

law

✓ Define common for all temperatures stable voltage range, after 

depletion and much before breakdown 

✓ Perform exponential fit requesting R2 ≥ 99% (same range as in the

gain reduction fits - same constraints)

✓ Calculate the multiplier with respect to the expected current

✓ Define breakdown in multiplier value (Is it really exponential??)

𝐼 = 𝑏 ∙ 𝑚𝑉
Exponential Fit:

Current Multiplier:

𝑅2 ≥ 99%Acceptance Criteria:

Breakdown:

𝐼𝑛𝑜𝑟𝑚 = 𝑏 ∙ 𝑚𝑉𝑖
Expected current:

𝑀 𝑉 =
𝐼𝑝𝑎𝑑 + 𝐼𝐺𝑅
𝐼𝑛𝑜𝑟𝑚

𝑉𝑏𝑟𝑤 → 𝑀 𝑉 >2

𝐼𝑝𝑎𝑑
Φ=0 = 𝐼𝑠 × 𝑒

𝑒𝑉
𝑛𝑘𝑇 − 1 × 𝐺 𝑒𝑉, 𝑇

𝐼𝑝𝑎𝑑 Φ = (𝐼𝑝𝑎𝑑
Φ=0+αΦ) × 𝐺∗(𝑒𝑉, 𝑇, Φ)

Un-irradiated:

Irradiated:

Function of acceptor 
removal, exponential 

to fluence and voltage 
plus a linear term

fit region
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•Breakdown Voltage
✓ Independent fit for each temperature

✓ Identical fit regions across all temperatures

✓ Identical fit regions for same fluence across all three implants

Constraints
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•Breakdown Voltage
Model

𝑉𝑏 = 𝑉𝑚𝑎𝑥 − 𝑉0 1 − 𝑒−cΦ + 𝑉0

Un-irradiated breakdown 
voltage

Breakdown of PIN

✓ Carbon and boron are compatible

✓ Gallium presents higher breakdown voltage (most possibly due to process 

variation)

✓ All implants compatible with sigmoid approach

✓ Highest breakdown voltage after irradiation  independent of gain – exclusively 

process dependent
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Timing Concepts

Fast time resolution:
✓ Maximize slope (large fast signals)

✓ Minimize noise to minimize jitter

✓ Implement time walk correction (CFD, ToT, ToA, ect)

✓ Uniform field with to minimize distortion term

𝑉𝑡ℎ𝑟
Τ𝑆 𝑡𝑟𝑖𝑠𝑒 𝑅𝑀𝑆

2

Where: S  signal

N  noise

𝑽𝒕𝒉 CFD threshold

trise rise time

𝑡𝑟𝑖𝑠𝑒
𝑆/𝑁

≈
𝑁

𝑑𝑉/𝑑𝑡

[
𝑉𝑡ℎ

𝑆/𝑡𝑟𝑖𝑠𝑒
]𝑅𝑀𝑆∝

𝑁

𝑑𝑉
𝑑𝑡 𝑅𝑀𝑆

𝜎𝑡𝑜𝑡
2 = 𝜎𝑡𝑖𝑚𝑒𝑤𝑎𝑙𝑘

2 + 𝜎𝑗𝑖𝑡𝑡𝑒𝑟
2 + 𝜎𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

2 + 𝜎𝐶𝑙𝑜𝑐𝑘
2Time Resolution:

𝑡𝑟𝑖𝑠𝑒
𝑆/𝑁

2
𝑇𝐷𝐶𝑏𝑖𝑛

12

2

𝜎𝐷𝑖𝑠𝑡.
2 + 𝜎𝐿𝑎𝑛𝑑𝑎𝑢

2 Fixed Term

~ 5-7 psec

Thin silicon sensors with internal gain

• Introduction iI
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-30oC -30oC

•Noise and S/N Ratio
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•Collected Charge - Boron

4fC limit
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•Collected Charge – Boron + Carbon

4fC limit
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✓ Unirradiated gain tuned to be identical for boron/gallium/carbon  implanted sensors 
fro accurate comparison

✓ Irradiated Carbon infused sensors present higher charge at lower HV
✓ Gallium implanted sensors are 10% worse than standard process boron
✓ Carbon is 20% better across the spectrum with respect to boron 

• Sensor R&D
LGADs – Charge collection
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•Collected Charge – Gallium

4fC limit
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•Dark Rate
Concepts & Methods

ΔT𝑡𝑟𝑖𝑔
𝑖 =

σ𝑗=1
𝑛−1(𝑇𝑗+1

𝑡𝑟𝑖𝑔
−𝑇𝑗

𝑡𝑟𝑖𝑔
)

𝑛

R𝑡𝑟𝑖𝑔
𝑖 =

1

ΔT𝑡𝑟𝑖𝑔𝑔
𝑖

✓ Sensors with gain present dark rate at 

high enough voltages

✓ Dark rate events result of thermal 

movement and random in nature

✓ Follow the Poisson distribution

Quantification

Self-trigger time:

✓ Study the time between consecutive self-triggering

✓ Use mean of 4 events (3 values) to reject cosmic background

Self-trigger Rate:
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•Signal Evolution with bias in LGADs
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Inter-pad region

➢ Deeper JTE implant with respect to multiplication layer

➢ Effective no-field region created next to the boarder 

➢ As voltage increase and gain field become more significant, 

“no-filed” region decreases

➢ Effect will never completely disappear

➢ In a perfect approach, JTE would be:

➢ exactly as deep as gain layer

➢ concentration gradient tuned to match gain layer

Nominal IP Voltage Measured IP IP efficiency (%)

25 μm

45 103.0 ± 1.3 2,2

50 91.8 ± 1.3 10,1

60 69.2 ± 2.4 17,4

15 μm
40 111.9 ± 4.9 14.8

60 70.2 ± 4.8 29.4

45 μm 120 68.4 ± 4.6 55.1

“no-field” region 

• Main Development Points
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• Geometric efficiency
Inter-pad region, i-LGADs

➢ Approached based on non-segmentation of  gain layer

➢ Double sided process with NO possibility for support 

structures (thin sensors extremely difficult) 

➢ Multiplication layer multiplies carriers

➢ Two contribution signal, primary electron collection and 

subsequent multiplication of  holes

➢ Distance between two signals depends on drift time, 

thinner sensors (<50μm) should be usable for time

➢ Typical pulse duration ~ 10 – 20 

times of  equivalent thickness 

LGAD

➢ Very good for timing, bad in 

SNR terms

➢ Need too go to 50 μm thick 
devices for any realistic 

applications
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• Inter-pad area
Inactive regions

C
N

M
 T

e
ch

n
o

lo
gy

FB
K

 T
e

ch
n

o
lo

gy

✓ High Field region in the gain layer 

✓ Field needs to be controlled in pad edges 
where values increase due to geometry

✓ Introduction of electrical isolation implant JTE 
(Junction Termination Extension)

✓ Typical JTE geometries introduce 50 – 150 μm 
inactive area between adjacent gain layers

✓ Dead area varies with field (bias voltage) in a 
non-linear way (see next slide)

✓ Overall fill factor reduction at 1mm pads:

JTE size Fill Factor reduction

50μm ~ 10 %

150μm ~ 30 %
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• Inter-pad area
Inter-pad region, Ti-LGADs 

➢ Approach based on removing JTE completely

➢ Using trenches as electron diffusion barrier 

and field containment (JTE and p-stop)

➢ DRIE trenches comparable to SIPM 

processes ~ 1μm thick, filled with oxide

➢ Relatively understood process

➢ Based on the distance from the edge an 

opposite polarity signal present on adjacent 

pad (probably dependent on trench depth)
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• Inter-pad area
Deep Junction LGADs

➢ Based on the non-segmentation of  the gain region

➢ Move the gain layer away from the surface and deeper into 

the substrate

➢ Requires not one but two implants in a relatively deep 

region (~ 5 μm) from surface

➢ Top implant has to be lower concentration than deeper 

gain implants, leading to deposition rather than 

impanation techniques

➢ Opposite sign signal on adjacent pad

➢ Only theoretical simulations from 

UCSC, BNL will work on a process

➢ Susceptible to crosstalk, but 

dependent probably on gain layer 

positioning

➢ Increase in process complications

Status and issues
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Electronic stopping power (ionization) consistency

✓ Varies with incident particle dose

✓ Typical doses in range of 1012 cm-2 – 1015 cm-2 

✓ Simulate with: 

▪ Real time implementation of SRIM (2013 version)
▪ Implantation in pure 14Si
▪ No delta-ray assumption
▪ Four different implantation doses tested (1012, 1013, 1014, 1015)
▪ Energy range 1 keV – 1MeV

✓ No variation for any of the three implants in the dose rate of 
interest

•Implantation Parameters – Energy 1

electronic stopping power 
(ionization)

nuclear stopping power 
(elastic scattering)

Implantation energy Stopping Power

High energy 
regime

Low energy regime
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• Mobility & Trapping
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• Mobility & Trapping
Neff – Dynamic Model
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