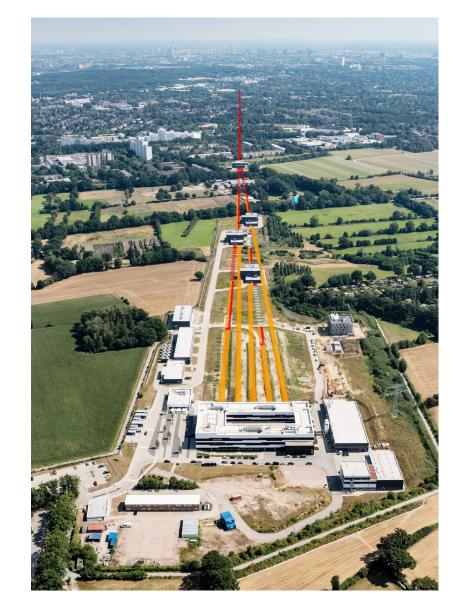
Integration and first operation of the GOTTHARD-II detector at the European XFEL

Marco Ramilli¹, K. Ahmed¹, D. Hammer¹, C. Lopez-Cuenca², B. Fernandes¹, D. Mezza², A. Mozzanica², A. Parenti¹, P. Schmidt¹, B. Schmitt², M. Turcato¹, J. Zhang²

¹European X-ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869 Schenefeld, Germany ²Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland

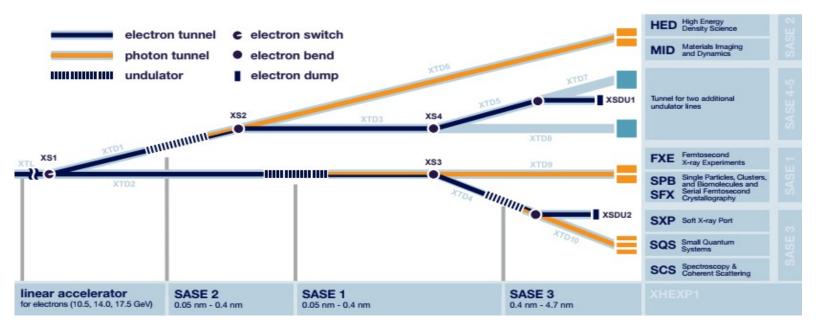
Ultrafast Imaging and Tracking Instrumentation, Methods and Applications – ULITIMA 2023 13- 16 March 2023, Menlo Park, CA


European XFEL

Integration and first operation of the Gotthard-II detector at the European XFEL

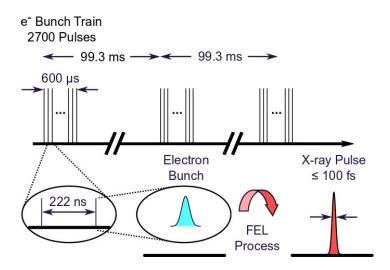
Overview

Introduction


- The GOTTHARD-II detector
 - The ASIC
 - Readout board and mechanics
 - Detector calibration
- Integration in the EuXFEL system
 - Control system
 - Correction pipeline (online and offline)
- First test: von Hamos spectrometer at FXE
- Test with pulse arrival monitor (PAM) at SPB/SFX
- Conclusions and Outlook

Integration and first operation of the Gotthard-II detector at the European XFEL

M. Ramilli, ULITIMA 2023, 15.03.2023


Introduction: European XFEL

Three main undulator systems (SASE 1, 2, 3)

- Supply six scientific instruments
- SPB/SFX, FXE, MID, HED ('hard X-ray')
- SCS, SQS, SXP ('soft X-ray')
- 10 Hz train rate
- Bunch train internal structure
 - **2700 pulses** for 600 µs
 - 4.5 MHz pulse rate (~222 ns spaced)
 - Lasing pulses < 100 fs width

European XFEL

GOTTHARD-II future installations: beam diagnostic

HIREX spectrometers

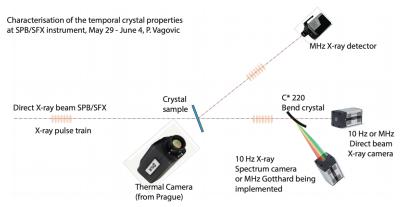
- Located near SASE1 and SASE 2 undulators
- Provide single shot pulse resolved diagnostic
 - Fundamental for beam qualification
- Currently using GOTTHARD-I 25 μm
 - Frame rate does not allow pulse-by-pulse measurements
 - Undersampled by a factor eight
- GOTTHARD-II 25 µm installation this summer

Pulse resolved movie of single-shot spectrum in a train

Small pitch needed for better energy resolution

train: 911208410, pulse 1 peak: 12895 eV 1750 bandwidth: 34 eV 1500 1250 intensity 1000 750 500 250 12840 12860 12880 12900 12920 12940 12960 photon energy [eV] **European XFEL**

Crystal: C (440) Detector: Gotthard setup with 0.5 MHz (pick up every 8th pulse/train) Ep=12900 eV, Ee=16.5 GeV, 0.25nC Machine with 400 pulses@4.5 MHz


N. Kujala, et al., Review of Scientific Instruments 91(10), 2020

4

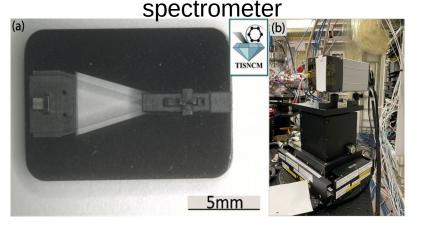
GOTTHARD-II future installations: MHz-TOMOSCOPY project

HORIZON-EIC-2021-PATHFINDEROPEN-01-01, Grant agreement: 101046448

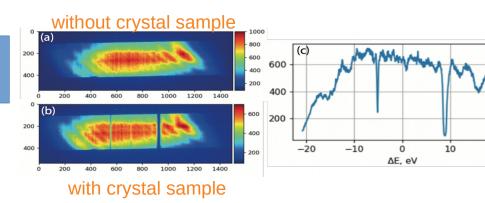
Slide courtesy of P. Vagovich

MHz-Tomoscopy project

Petrov, I. et al.

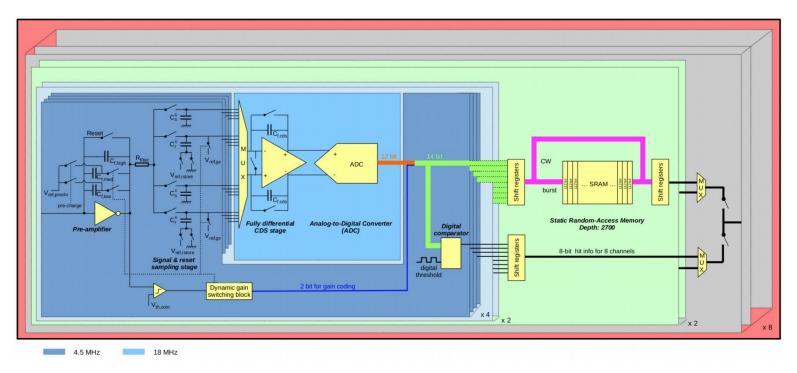

- New Horizon Europe project
- Provide microscopy device at MHz sampling rate
- Current spectrometer only 10 Hz

Absolute spectral metrology of XFEL pulses using diffraction in crystals,


arXiv, 2023, https://doi.org/10.48550/arxiv.2303.00072

- pulse-by-pulse spectral information needed
- First tests with GOTTHARD-II in April 2023

European XFEL



20

M. Ramilli, ULITIMA 2023, 15.03.2023

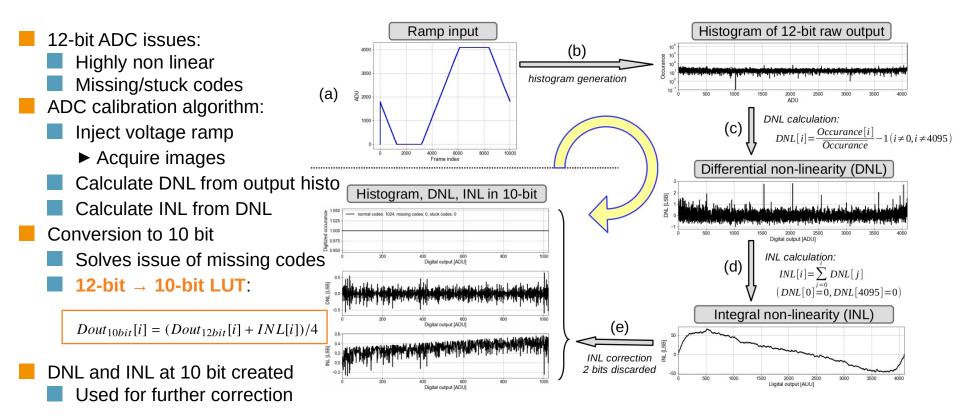
GOTTHARD-II ASIC

Developed at PSI for EuXFEL Two sets of analog storage cells Hybrid strip detector technology 'even' and 'odd' 320/450 µm thick sensor wire-bonded to ASIC Four channels multiplexed to: ASIC built in UMC 110 nm technology Fully differential CDS stage Dynamic gain switching pre-amplifier 12 bits SAR ADC Three gain stages: G0, G1, G2 ► Target: 10 bit From single photon to $\sim 10^4$ photons @12.4 keV Output stored in a SRAM Capable up to 2720 images per train European XFEL 400 kHz continuous imaging

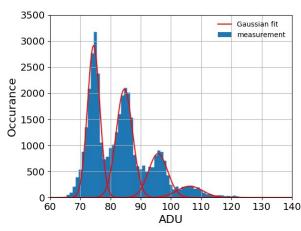
GOTTHARD-II module

Main board

- +12 V external LV
 - ► Up to 500 V internally
- FPGA Intel Cyclone 10 GX(CX)
- x2 10 Gb/s IF
 - ► Slow control (~ 1 Gb/s transceiver)
 - Data out (10 Gb/s SFP+)
- Timing board
- x2 RJ45
 - ► EuXFEL clock + train trigger
 - Metadata
- x1 3.125 Gb/s SFP
 - VETO out

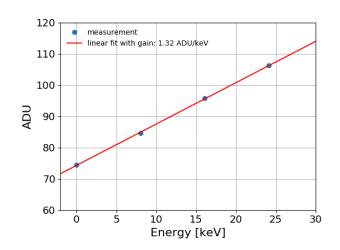

European XFEL

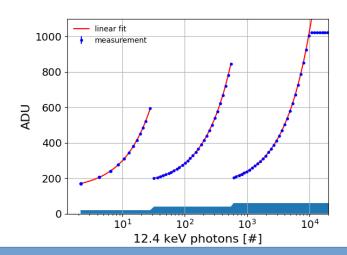
M. Ramilli, ULITIMA 2023, 15.03.2023



- Two versions
 - 50 µm pitch strips
 - ► 1280 strips
 - 25 µm pitch strips
 - ► 2560 strips
 - Readout interleaved by two boards
- Water+glycol cooled
 - Power dissipation ~ 12 W (x2 for 25 μm)
- Power:
 - +12 V LV
 - 'Enable' (between +2.5 V and +12 V)
- 29 detectors to be installed at EuXFEL

ADC calibration

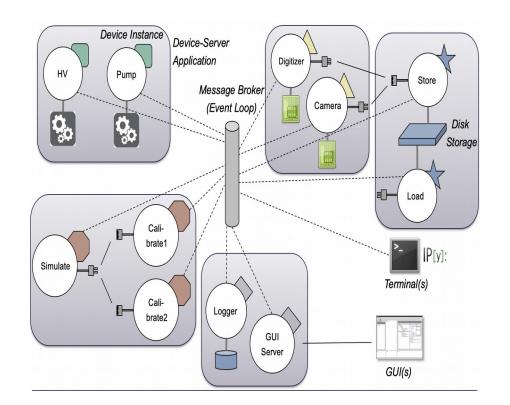

Detector calibration: gain and offset



- Absolute calibration of G0
 - Monochromatic flat field (e.g. Cu fluorescence)
 - Peak fit
- Current source scan
 - Linear fit to measure gain ratios
 - ► G0/G1, G1/G2
 - Gain conversion map calculated for G1 and G2

Offset map

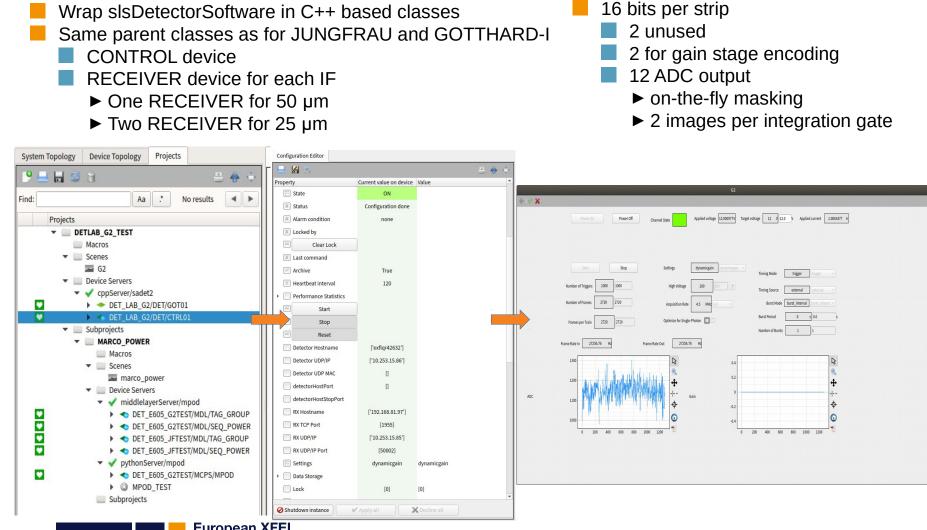
- G0 offset from dark run average
- Offset for G1 and G2 from linear fit
- Values stable (~ 1% variation) against temperature
 - ► Tested from 10 °C to 25 °C



More on GOTTHARD-II ASIC design and calibration:

"Design and first tests of the Gotthard-II readout ASIC for the European X-ray Free-Electron Laser". J. Zhang et. al, 2021 JINST 16 P04015 DOI 10.1088/1748-0221/16/04/P04015

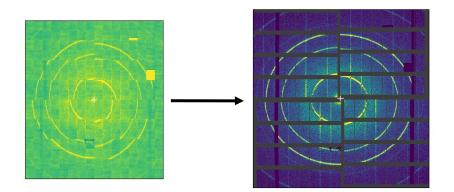
Karabo Control System Architecture


- Central message broker (control slow data)
 - Currently: OpenMQ
- Event driven:
 - Data propagates through the system when values change
- Content specific extensions (devices)
 - Run as plugins in device servers
 - C++ and Python APIs
- Device servers
 - Run as system servers via daemontools
 - ► Can be started, stopped, killed
 - Rolling text logs
- Karabo-GUI main access point for users

If you want to read more: https://www.xfel.eu/organization/scientific_and_technical_groups/controls/index_eng.html

M. Ramilli, ULITIMA 2023, 15.03.2023

GOTTHARD-II Integration: Karabo



European XFEL

Calibration effort at European XFEL

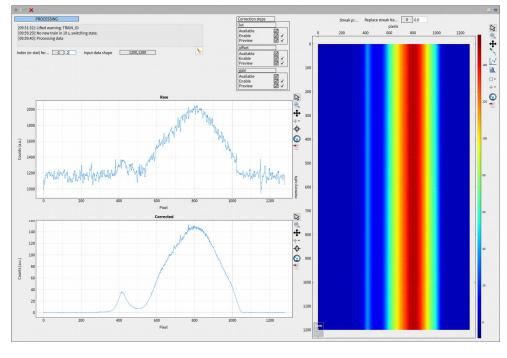
European XFEL aims to provide facility users with a fully corrected and calibrated dataset as the primary data product.

SRN 27.4, 35 (2014)

- Develop correction methods for detectors used at European XFEL
 - AGIPD, LPD, DSSC, Jungfrau, Gotthard2, pnCCD, FastCCD, ePix
- Collect and catalogue data for characterization and calibration
- Build and maintain machinery and infrastructure to apply these methods automatically and at scale

GOTTHARD-II Integration: Correction Pipeline

Constants loaded in DB

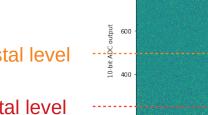

Online correction

- Implemented in Karabo devices
 - Detector class specific
 - Basic correction only
 - Code optimized for speed
 - Run on high performance machines
- Accessible from GUI
- Output corrected image

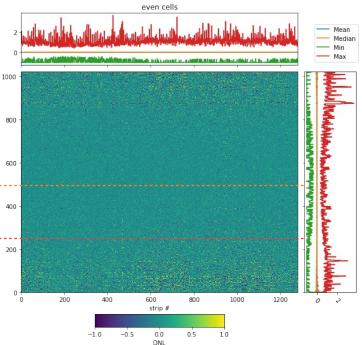
Offline correction

- Implemented in scripts
 - Detector class specific
 - Algorithm aims to most complete correction possible
 - Common mode correction
 - Clustering
 - ► Baseline shift compensation ...
 - Code written to handle large data volumes
 - Correction triggered by Metadata Catalogue
 - Scripts run a SLURM jobs on Maxwell Cluster

European XFEL

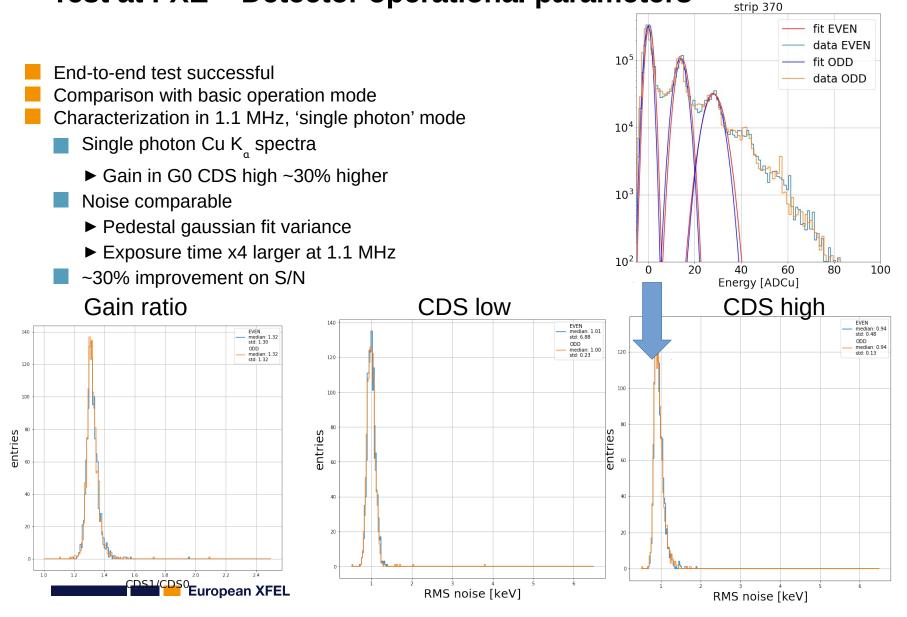

					Status: 2023-02-	25 11:40:03 CET Runs	s: 22 Calibrations: 0 Tea	am: 5 Size: (
Back	Edit 🗐 Runs 🛛 B	eamtime status -						
General Publi	c Information Runs	s Logbook	Team	Repositories Beta!	Calibration Constants Publicati	on History		
oposal Runs								
Automatically as	sess new runs (after be	ing closed by DA	(Q) as: To be	evaluated manually -				
	sess new runs (after be art run calibration after r	-			ibrate runs with run types assessed a	"Darks" or "Test exp	periments" types)	
Automatically sta	art run calibration after r	-		ration service will not cali	ibrate runs with run types assessed a: Start date	s "Darks" or "Test exp Run status	periments" types) Data Assessment	Calibrati
Automatically stand	art run calibration after r	migration: No 🗸	(Note: Calibra	ration service will not cali				
	art run calibration after i	migration: No +	(Note: Calibra Sample Nam	ration service will not cali	Start date	Run status	Data Assessment	Calibrati

First test: pump and probe at FXE


- Provide end-to-end test of integration
- The detector has been mounted on the robotic arm
 - To be used in the von Hamos spectrometer
 - Co-planar with the JF1M
- 1.5 mm slit mounted to reduce background
- Take pump-and-probe measurements
 - Compare the results of the two detectors
- 'Single Photon' optimized settings tested for the first time:
 - Vref of the storage cells changed to shift baseline
 - Optimize usage of linear region of ADC
 - CDS set to high gain
 - ► Improve S/N ratio
- Clock divider increased to run at 1.1 MHz

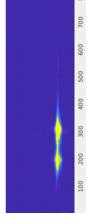
'single photon' pedestal level

normal pedestal level

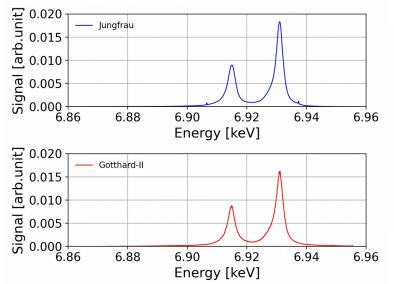


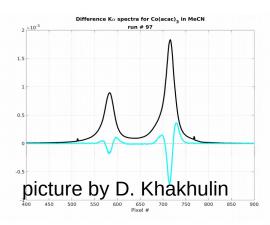
European XFEL

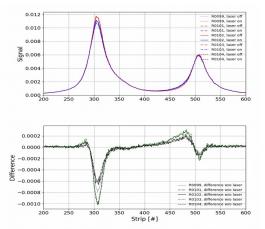
Test at FXE – Detector operational parameters



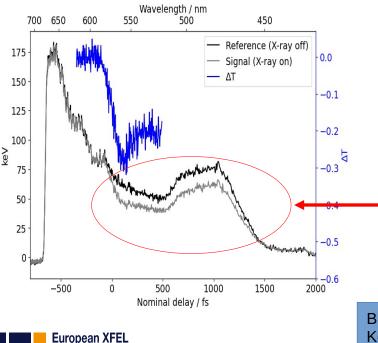
Integration and first operation of the Gotthard-II detector at the European XFEL

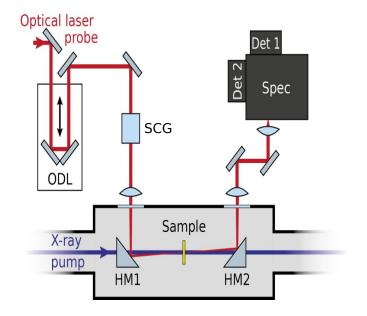

M. Ramilli, ULITIMA 2023, 15.03.2023


Test at FXE – Pump and probe



- Energy dispersive measurement
- Detector in 1.1 MHz, 'single photon' mode
- Different combinations of X-ray and laser rep. rates
 - Compare the JF signal difference with G-II
 - Some difference in results
 - Slightly different spot shape
 - ► Further investigation

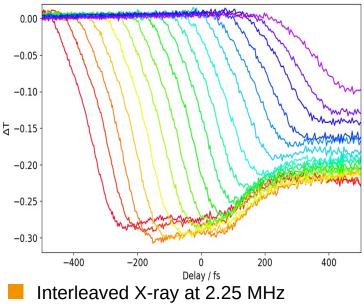




Photon arrival time measurement with spectral encoding

Slide courtesy of T.Sato, R. Letrun, J. Koliyadu, J. Liu

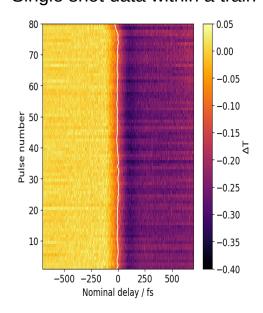
- X-ray induces change in optical properties of dielectric material
- Relative arrival time of X-ray/optical laser information mapped to optical laser spectrum



X-ray induced change in optical transmission: $\Delta T = Signal / Reference - 1$

Bionta et al., Opt. Express 19, 21855–21865 (2011) Koliyadu et al., J. Synchrotron Rad. 29, 1273–1283 (2022)

GOTTHARD II for photon arrival time measurement at SPB/SFX Slide courtesy of T.Sato, R. Letrun, J. Koliyadu, J. Liu


Delay scan, average of 100 shots

- Optical laser reference at 4.5 MHz
- Time resolution comparable with GOTTHARD-I
 - Experimental conditions not optimized yet Previous setup:
 - GOTTHARD-I
 - Maximum 282 kHz X-ray repetition rate
 - ► Max ~60 X-ray pulses

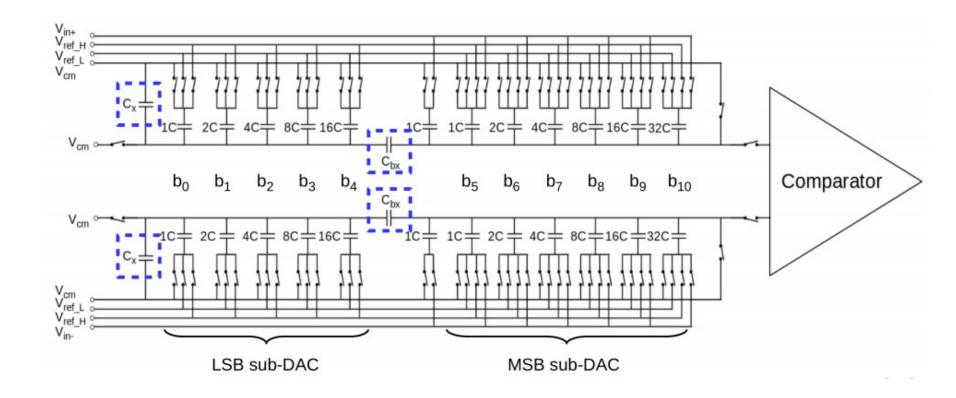
European XFEL

Single shot data within a train

Summary

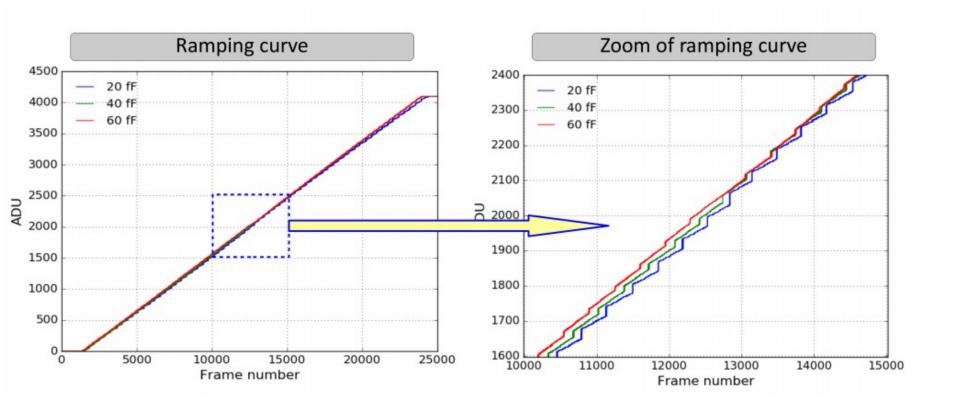
- GOTTHARD-II is hybrid strip detector developed at PSI
 - Fast on-chip ADC
 - ► 4.5 MHz frame rate in burst mode
 - ► 2720 images/train
 - Dynamic gain switching pre-amplifier
 - Two versions:
 - ► 50 µm pitch, 12 detector delivered at EuXFEL
 - ► 25 µm pitch, first delivery summer 2023
- Successfully integrated 50 µm pitch in EuXFEL control system and correction pipeline First tests performed
 - X-ray sensitive 50 µm detector in von Hamos spectrometer at FXE
 - ► First test in EuXFEL environment
 - Assessed status of integration
 - ► Verified high CDS, 1.1 MHz operation
 - Visible light 50 µm detector in pulse arrival monitor at SPB/SFX
 - Allows pulse arrival timing at 2.25 MHz X-ray pulse rate
- Upcoming installations:
 - MHz-TOMOSCOPY setup at SPB/SFX
 - ► Spring 2023
 - HIREX spectrometer
 - ► Summer 2023

European XFEL


Integration and first operation of the Gotthard-II detector at the European XFEL

Backup

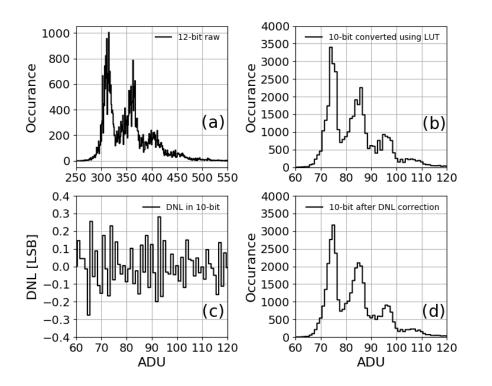
M. Ramilli, ULITIMA 2023, 15.03.2023


M. Ramilli, ULITIMA 2023, 15.03.2023

ACD schematics

M. Ramilli, ULITIMA 2023, 15.03.2023

Missing codes

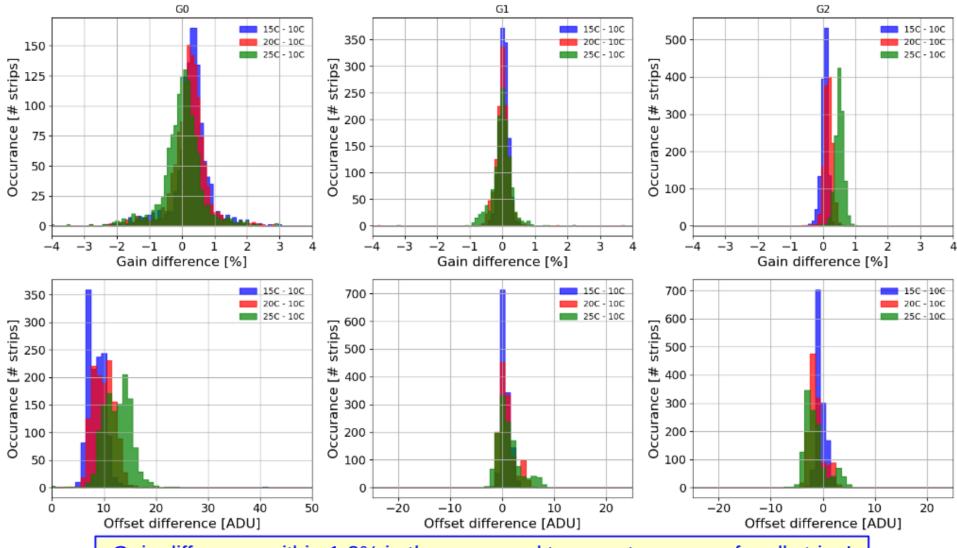


ADC output correction

Raw 12-bit ADC output
LUT 12 bit → 10 bit
DNL at 10 bit within+/- 0.5
Not critical for imaging

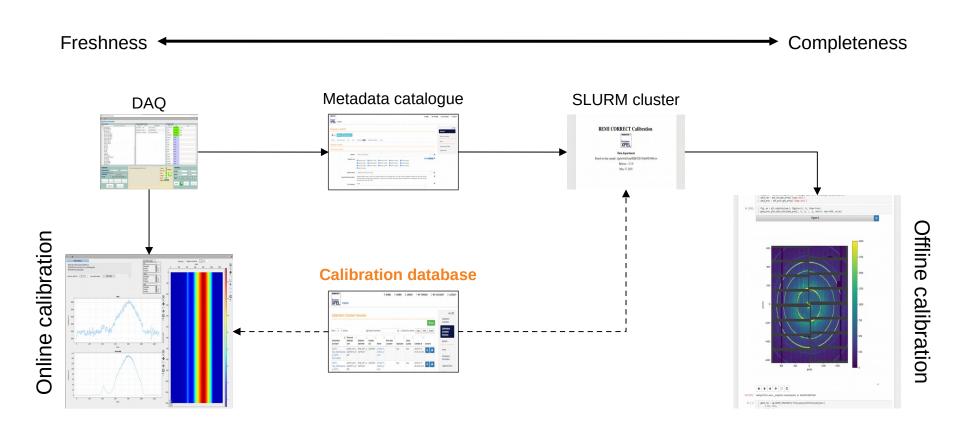
Relevant for spectroscopic information Energy calibration requires correction:

$$N_{10bit,corr}[i] = \frac{N_{10bit}[i]}{DNL_{10bit}[i] + 1}$$



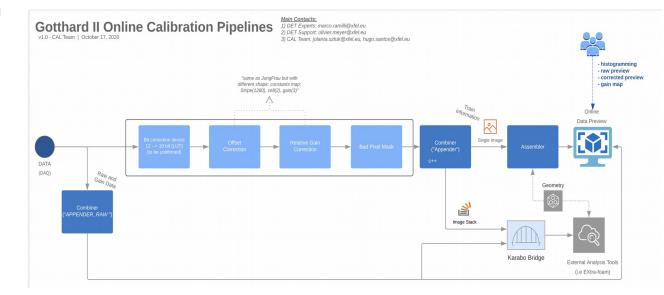
300 ns exposure time to settle pulser input signal

Dynamic range - 3: Statistics for all strips


Temperature dependence of G0, G1, and G2 as well as offsets for "even/odd"

Gain difference within 1-2% in the measured temparature range for all strips!

Page 12


Calibrated detector data at European XFEL

GOTTHARD-II Integration: Offline Correction

First version of Offline Correction (by K. Ahmed)

- So called 'semi-online'
- Constants *not* in the CalCat:
 - Constants retrieved from files on the online cluster
 - Expert needed to change constants
 - /proc folder also on the online cluster
- Performs offline:
- 12bit \rightarrow 10 bit conversion via LUT
- Offset subtraction
- Gain correction

