# Hit Reconstruction Pulse Shape Fit Parameters

Alic Spellman Cameron Bravo 01/09/2021







### Introduction

- APV25 channel response modeled with Four-Pole Fit Function
- Used UCSC testboard Calibration Pulse Scan data (ADC as function of 48 time bins) to calculate svt shape fit parameters values for 2021 slim sensors
- Parameter values very different from default values in conditions database
  - Default values lead to poor hit fitting, effects track and vertex reconstruction efficiency
  - All 2019 and 2021 analysis thus far use these default fit parameters
- No testboard calibration pulse data available for 2019 sensors, or 2021 "non-slim" sensors
- Calibration pulse run using DAQ taken at Jlab 2021 (run 014393), however error in script lead to only 6 (instead of 48) time bins for a given pulse being filled
  - Similar run taken in 2019 will be analyzed separately in future
- Successfully fit 99% of alive channels, using only 6 time samples
  - Dead channels and failed fits use nearest neighbor fit param values
- Local database updated with correct fit params, will compare reconstruction



#### **APV Pulse Fit Functions**

- Hps-java pulse fit function does not match function referenced in <u>Sho's thesis</u>:
  - Function in hps-java stops at k=2 in summation, vs k=3 in thesis
- Cam emailed Sho, and Sho confirmed that both his thesis, and <u>reference</u> used for his thesis, have typos —>
- <u>APV pulse fit function in hps-java is correct!</u>
- Also noticed additional Four-Pole function ("3 Tau Function") in apv6\_formfactors paper worth studying

$$F_{4pole}(t) = \frac{\tau_1^2}{(\tau_1 - \tau_2)^3} \left( e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} \sum_{k=0}^{3} \frac{\left(\frac{\tau_1 - \tau_2}{\tau_1 \tau_2} t\right)^k}{k!} \right)$$
(4.2)

$$\frac{1}{(1+j\omega\tau_1)(1+j\omega\tau_2)^4} \xrightarrow{\mathbf{F}.\mathbf{T}.} \underbrace{\frac{\mathbf{J}_1^3}{\tau_1}^2}_{(\tau_1-\tau_2)^4} \left\{ e^{-\frac{t}{\tau_1}} - \sum_{k=0}^3 \left( \frac{\tau_1-\tau_2}{\tau_1\tau_2} \cdot t \right)^k \frac{e^{-\frac{t}{\tau_2}}}{k!} \right\}$$

Parameterization of CMS silicon detectors pulse shape and Form Factors determination. A. Buffini, S. Busoni, M Meschini, G. Parrini

Paper shows 5 poles for a "4 pole function"...Correct values in red

$$\frac{1}{(1+j\omega\tau_1)(1+j\omega\tau_2)(1+j\omega\tau_3)^2} \xrightarrow{\overline{\mathrm{F.T.}}} A \cdot e^{-\frac{t}{\tau_1}} + B \cdot e^{-\frac{t}{\tau_2}} + (C+D\cdot t) e^{-\frac{t}{\tau_3}}$$
(13)



## **UCSC Calibration Cdel Scan**

- Calibration pulse scans taken at UCSC on testboard for 2021 L0/Slim-sensor production
- APV25 internally injects charge into channels, reads out
  6 time samples at 25ns intervals (TOP)
- APV25 "cdel" setting (1-8) changes the time delay on readout by 3.125ns\*(8-cdel) to provide more pulse time resolution (BOTTOM)
- Fit data with pulse shape function defined in hpsjava to get real pulse shape fit parameters
- This data only exists for 2021 slim sensors...



#### **Comparing Fit Functions/Params**

- Fitting pulse with Standard Fit Func using conditions database default values results in poor fit in general
- Fitting pulse with Standard Fit Func and allowing fit parameters to float results in good fit
  - Expect gains in reconstruction
- Fitting using alternative "3 Tau" Fit Function results in similar fit quality
  - Ignore this function, USE STANDARD FIT
     FUNCTION ONLY
  - See backup for justification



#### Fit channel pulse response using Four Pole Function

- **RED:** Using existing database params
- **GREEN:** Allow fit parameters to float
- MAG/ORNG: Alternative fit function, not used



### **APV Pulse Shape Fits**

- Database default 2019/2021 values tau1=35.0, tau2=10.0
- 2021 slim sensor fit tau1 mean  $\sim 56$  significantly different than database
- Current fit parameters in hps-java not representative of 2021 slim sensors, rawhit fit quality impacted
  - Likely true for non-slim sensors
  - Likely true for 2019
- Compare 2021 reconstruction using default fit parameters, and newly caluclated param values



Standard Function fit results for floating tau1 and tau2 2021 Slim Sensors Only



#### **Track Reconstruction New Taus vs Database**

- Cameron ran standard reconstruction on 2021 Run 14191 using existing 2021 hps-java database APV channel pulse shape fit parameters
  - Default values (Tau1 = 35.0 and Tau2 = 10.0)
- Cam also ran standard reconstruction on same file, using Tau1=56.4 and Tau2 = 8.7 for all channel fit parameters
- Compare changes in hit/track reconstruction





**Reconstruct** more Tracks using New **Tau Values** 

#### New Taus

#### **Database Taus**



















#### **Track Reconstruction New Taus vs Database**

- Improvement in Track reconstruction/more Tracks and Vertices using New Tau fit values compared to existing hps-java 2021 conditions database values
- While not investigated here, likely same gains in Tracking/Vertexing would be found for 2019 reconstruction (as conditions database holds same default values as 2021)
- Need to update database with calibrated shape fit parameters for 2019 and 2021 as soon as possible!
- Need calibration scan data for all 2019 and 2021 sensors

# 2021 JLAB SVT SHAPE FIT PARAMETERS



- Calibration pulse scan run taken at Jlab in 2021 (run 14393)
- However, scan script had error, so only 6 time samples available (instead of 48 with full scan)
- Made hpstr processor to read evio events, get all rawsvthits, and build Tprofile of hit amplitude vs time, for all channels
- Fit Tprofile with standard fit function to get shape parameter values amplitude, t0, tau1, tau2
  - Baseline parameter fixed and set equal to Mean of Bin(0)



Tprofile of F0H2 channel 106 with 2000 Calibration Pulse events. Only 6 time bins available. Profile fit with standard shape fit function.



- Fit parameter results of Jlab calibration data
- **NO CUTS** yet on fit/pulse quality
- (TOP) slim sensor tau1 v tau2
  - Well grouped
  - Tau1 ~53
  - Tau2 ~8
- (BOTTOM) thick sensor tau1 v tau2
  - Multiple outlier channels
  - Large dispersion in taus
  - Distinct tau1/tau2 groups
- Check if outliers are bad calibration pulses or bad fits
- Check t0 and amplitude fits results



SANTA CRUZ 14

- Fit parameter results of Jlab Cdel = 1 calibration scan data
- NO CUTS on fit/pulse quality
- (TOP) slim sensor t0 v amp
- (BOTTOM) thick sensor t0 v amp
  - Many outier in t0 and amplitude





- Plots show examples of failed calibration pulse on channel
- Pulse should peak near time sample 3
- Bad pulses *largely* identified by checking if time\_sample3 < (time\_sample2 AND time\_sample4)
- For channels with bad calibration pulse, use nearest neighbor shape fit parameters instead



### **Tau1 Spikes**

- (TOP) Plot of svtid vs fit tau1
- tau1 = 0 represent "dead" channels
- Large tau1 spikes (> 100) likely indicate poor fit
  - (Bottom) shows calibration pulse missing/bad
- Cut fits with tau1 > 100
- Use nearest neighbor channel shape fit parameters for database





SANTA CRII7 17

#### Low Tau1 Values

- (TOP RIGHT) Plot shows 3 neighboring channels,
  - svtid\_691 has bad fit with tau1~1 , and "nan" errors on fit params
  - Cut channels where errors are "nan", use nearest neighbor fit params
- (BOTTOM RIGHT) Plot shows 3 neighboring channels with good fits
  - Tau1 values vary between 52.2 55.26
  - (BOTTOM LEFT) shows oscillation in tau1
    - Fits look okay





#### to Fit Parameter

- Plot shows svtid vs t0 fit param
- Slim sensors (svtid < 4096) have different average t0 than thick sensors
- (BOTTOM RIGHT) Large t0 spikes correlate to bad pulses...cut these channels
- (BOTTOM LEFT) Interesting t0 pattern as function of channel...
- Cut t0 > 30
- Cut  $t0 \leq 0$







UNIVERSITY OF CALIFORNIA

#### 2021 Jlab Pulse Shape Fits **POST CUTS**

Checking svt shape fit parameters after cutting the following channels:

- No/bad calibration pulse
  - Fit errors are "nan"
    - tau1 > 100
- t0 > 30 ns and  $t0 \le 0$  ns

Channels that fail these cuts are assigned fit parameters of their nearest neighboring channel that is not cut





- (TOP) Slim sensor t0 width looks good
  - Two peaks in amplitude
- (BOTTOM) Thick sensor t0 improved...no severe outlier channels
  - Some scattered channels with larger t0 than expected...



- Calibration pulse shape fit parameters for 99% (23753/(24575-640)) of connected channels calculated
- Remaining channels (including disconnected) assigned fit parameter values of nearest "good" neighbor
- Fit parameters exported to local copy of conditions database for testing
- Will compare DQM plots using default database params (tau1 = 35.0, tau2 = 10.0, t0 = -10.0, amplitude = 2500), and new fit values







- Have calibrated svt pulse shape fit parameter values for 2021 SVT
  - Updated in local copy of database for now
  - Will compare tracking using new vals
  - Are we okay with using nearest neighbors for channels w/o calib pulse?
- Should decide if full calibration scan upon return to Jlab is necessary
- Similar 2019 run exists, but in different format, will require modified eivo processor
  - Will work on getting fit params soon
- Validate 2016 values as sanity check?







#### Current vs 3 Tau

- Fit parmeter seeds for 3 Tau Shape are unreliable
  - Some channels fail fits using same seeds
  - Sometimes fixing baseline gives a better fit...sometimes letting it vary gives better fit
- When 3 Tau fit is good (determined by checking errors on tau3 fit parameter), tau1 and tau3 are ~equal
- Looking at fit function definitions, if tau1 = tau3, "3 Tau Fit
   Function" becomes equivalent to Current Fit Function
- If 3 Tau Function only performs good fit when tau1 = tau3, it's no different from Current Fit Function, except more difficult to seed fit parameters
- Conlusion: stick with Current Fit Function





#### <u>3 Tau Fit Function</u>

$$\frac{1}{(1+j\omega\tau_1)(1+j\omega\tau_2)(1+j\omega\tau_3)^2} \xrightarrow{\overline{\mathrm{F.T.}}} A \cdot e^{-\frac{t}{\tau_1}} + B \cdot e^{-\frac{t}{\tau_2}} + (C+D\cdot t) e^{-\frac{t}{\tau_3}}$$

TY OF CALIFORNI