

The quest for long-lived particles: searching for displaced vertices and tracking in the trigger

SLAC seminar | Emily A. Thompson | Jan. 11, 2022

Outline

- 1. Long-lived particles
 - Why are they interesting?
 - How do we search for them?
- 2. Searches for displaced vertices with the ATLAS detector
 - DV + muon (<u>Phys. Rev. D 102, 032006 (2020)</u>)
 - DV + jets (work in progress)
- 3. The ATLAS FastTracKer system
 - Key concepts for speedy & efficient track-finding
 - Applications to long-lived particle searches

The Standard Model is an impressive theory which has been put under intense scrutiny at the Large Hadron Collider (LHC)

Proton-proton collisions at \sqrt{s} = 13 TeV

The Standard Model is an impressive theory which has been put under intense scrutiny at the Large Hadron Collider (LHC)

The Standard Model has so far been able to describe ATLAS data remarkably well. Are we done? No!

We know there must be physics beyond the Standard Model.

But so far, there have been **no obvious signs of new physics** at the LHC

 \rightarrow is new physics is 'hiding' in the data? i.e. with a long lifetime?

What makes a particle long-lived, and why search for them?

• Long-lived particles (LLPs) arise if:

$$d\Gamma \sim \frac{1}{M} |\mathcal{M}|^2 d\Pi$$

Small matrix element ~ or ~ Small phase space

• LLPs are abundant in the Standard Model and arise naturally in many BSM theories too

Any model with a small coupling, small mass splitting, or decays via off-shell particles.

Inner tracking detector 1.1 m **Dissapearing track** Charged LLP decays into invisible particle (i.e. dark matter)

and a low momentum SM particle (i.e. dark matt

* not to scale

* not to scale

5.

1.

- 2.
- 3.
- 4.

12

1. Pick a signature

- Displaced vertices in the inner detector
- 2. Pick a trigger
 - Require "triggerable" object in the event

3.

4.

5.

The ATLAS Trigger System

- The trigger system aims to reduce the event rate from 40 MHz to 1 kHz, selecting the most interesting events
- ATLAS has a two-level trigger system: •

 - 2. High Level Trigger (HLT): software based \longrightarrow tracking limited to regions of interest
 - 1. Level-1 (L1): hardware based calo energy deposits, muon segments, but **no tracks**
- Searches for displaced vertices must require "triggerable objects" in the event (i.e. jets, leptons, ...) ٠

1. Pick a signature

- Displaced vertices in the inner detector
- 2. Pick a trigger
 - Require "triggerable" object in the event

3.

4.

5.

1. Pick a signature

- Displaced vertices in the inner detector
- 2. Pick a trigger
 - Require "triggerable" object in the event
- 3. Utilize special object reconstruction
 - Displaced track and vertex finding
- 4.

5.

Charged particle tracks from LLP decays do not necessarily point back to interaction point.

Standard tracking (ST):

• Tight selection on impact parameters of tracks

Large radius tracking (LRT)

- Uses unused hits after standard tracking
- Loosens selection on impact parameters
- Only subset of data

Coming soon: new & improved LRT, run on all data!

Find **displaced vertices** from standard and large radius tracks:

- 1. Form 2-track seed vertices from high-quality tracks; hit-pattern requirements
- 2. Merge vertices together to form N-track vertices
- 3. Attach lower quality tracks to vertex

1. Pick a signature

- Displaced vertices in the inner detector
- 2. Pick a trigger
 - Require "triggerable" object in the event
- 3. Utilize special object reconstruction
 - Displaced track and vertex finding

4.

5.

20

1. Pick a signature

- Displaced vertices in the inner detector
- 2. Pick a trigger
 - Require "triggerable" object in the event
- 3. Utilize special object reconstruction
 - Displaced track and vertex finding
- 4. Derive background estimate from data
 - Backgrounds are often difficult to model

5.

1. Pick a signature

- Displaced vertices in the inner detector
- 2. Pick a trigger
 - Require "triggerable" object in the event
- 3. Utilize special object reconstruction
 - Displaced track and vertex finding
- 4. Derive background estimate from data
 - Backgrounds are often difficult to model
- 5. Choose level of model-independence a matter of taste!

Benchmark model

Reinterpret: what do results say about another model?

Search for events with displaced vertex and displaced muon

Using full Run-2 dataset: Phys. Rev. D 102, 032006 (2020)

Benchmark model

• Stop pair production; small R-parity violating coupling

Strategy

Trigger on muons or E_T^{miss}

muon spectrometer info only calorimeter-based in trigger (muons invisible)

• Require two displaced objects in the event:

Selection level	Muon selection	Displaced vertex selection		
Preselection	$p_{\rm T} > 25 \text{ GeV}, \eta < 2.5,$ $2 \text{ mm} < d_0 < 300 \text{ mm},$ $ z_0 < 500 \text{ mm}$	$\begin{vmatrix} r_{\rm DV} < 300 \text{ mm, } z_{\rm DV} < 300 \text{ mm,} \\ \min(\vec{r}_{\rm DV} - \vec{r}_{\rm PV}) > 4 \text{ mm, } \chi^2/N_{\rm DoF} < 5, \\ \text{Pass material map veto} \end{vmatrix}$		
	Muon displacement:	Vertex displacement:		
	d ₀ > 2 mm	R (DV-PV) > 4 mm		

Sources of backgrounds

Sources of background **displaced vertices**:

Rejection strategy:

- Heavy-flavor veto \rightarrow isolation
- Cosmic-muon veto → geometry considerations
- Fake-muon veto \rightarrow quality

Sources of backgrounds

Rejection strategy:

- Heavy-flavor veto \rightarrow isolation
- Cosmic-muon veto → geometry considerations
- Fake-muon veto \rightarrow quality

Rejection strategy:

Hadronic interactions

- Require $N_{trk} \ge 3$
- Require m > 20 GeV
- Veto DVs inside material

Sources of background displaced vertices:

Merged vertices Accidental crossings

Data-driven background estimation

Sources of displaced muon background estimated **separately**; displaced vertex background estimated **inclusively**

Variables used to reject background displaced muons are uncorrelated from variables used to reject background DVs
 → use ABCD method:

Results

First search for displaced vertices using full Run-2 dataset with ATLAS!

E_T^{miss} -triggered events:

Observed data is consistent with background predictions

Muon-triggered events:

Run 350013, LB 243 Event 842252132 Recorded 2018/5/10 23:47:17

Muon Stream Event

200 mm

Selected Displaced Vertices

q

q

Results

Exclude \tilde{t} with mass below 1.7 TeV and a lifetime of 0.1 ns

Search for displaced vertices in multijet events

Using full Run-2 dataset: work in progress

Search for DV produced in association with jets

Benchmark model

• Gluino pair production; small R-parity violating coupling

Strategy

- Trigger on **multiple jets** → 3-7 jets at 45-200 GeV
- Require that events contain:
 - 1) high multiplicity of **high-pt jets** or **trackless jets**
 - 2) at least one displaced vertex:

 $\begin{array}{l} \mbox{Displaced vertex selection} \\ r_{DV} < 300 \mbox{ mm}, \ |z_{DV}| < 300 \mbox{ mm} \\ r_{DV-PV} > 4 \mbox{ mm} \\ \chi^2/N_{\rm DoF} < 5 \\ \mbox{Pass material map veto} \\ \hline N_{\rm trk} \geq 5, \ m_{DV} > 10 \mbox{ GeV} \end{array}$

p

Background DV sources are the same as in DV+muon, but simple ABCD method is not possible

Data-driven background estimation strategy:

- 1. Estimate each source **individually**
 - • Build & normalise mass templates for each
- 2. Estimate all backgrounds inclusively
 - Measure correlations between jets and DV

Background DV sources are the same as in DV+muon, but simple ABCD method is not possible

How do we estimate **accidental crossings** from data?

SM LLP	Mass $[GeV]$	Lifetime [ns]	Target decay	BR	
K_s^0	0.498	0.090	$\rightarrow \pi^+\pi^-$	69~%	🔪 🗸 Long lifetime
Λ^0	1.12	0.263	$\rightarrow p \pi^-$	64~%	\int \checkmark High BR to fully reconstructable decays

• K⁰_s DVs **without** an accidental crossing are identified with 2-trk DVs

SM LLP	$Mass \ [GeV]$	Lifetime [ns]	Target decay	BR	_	
K_s^0	0.498	0.090	$\rightarrow \pi^+\pi^-$	69~%	\sum	Long lifetime
Λ^0	1.12	0.263	$\rightarrow p \pi^-$	64~%	$\int \checkmark$	High BR to fully reconstructable decays

- K⁰_s DVs **without** an accidental crossing are identified with 2-trk DVs
- K⁰_s DVs **with** an accidental crossing are identified with 3-trk DVs

SM LLP	Mass [GeV]	Lifetime [ns]	Target decay	BR	
K_s^0	0.498	0.090	$\rightarrow \pi^+\pi^-$	69~%	🔪 🗸 Long lifetime
Λ^0	1.12	0.263	$\rightarrow p \pi^-$	64 %	\int \checkmark High BR to fully reconstructable decays

• K⁰_s DVs **without** an accidental crossing are identified with 2-trk DVs

• K⁰_s DVs **with** an accidental crossing are identified with 3-trk DVs

SM LLP	$Mass \ [GeV]$	Lifetime [ns]	Target decay	BR	
K_s^0	0.498	0.090	$\rightarrow \pi^+\pi^-$	69~%	🔪 🗸 Long lifetime
Λ^0	1.12	0.263	$\rightarrow p \pi^-$	64~%	✓ High BR to fully reconstructable decays

- Our benchmark model includes small but non-zero RPV coupling $\lambda^{\prime\prime}$
- Partial Run-2 summary paper revealed large area uncovered by existing ATLAS searches:

 $d\Gamma \sim \frac{1}{M} |\mathcal{M}|^2 d\Pi$

1. Pick a signature

- Displaced vertices in the inner detector
- 2. Pick a trigger
 - Require "triggerable" object in the event
- 3. Utilize special object reconstruction
 - Displaced track and vertex finding
- 4. Derive background estimate from data
 - Backgrounds are often difficult to model
- 5. Choose level of model-independence a matter of taste!

- **1.** Pick a signature
 - Displaced vertices in the inner detector
- 2. Pick a trigger
 - Require "triggerable" object in the event

This is a limitation of DV + X searches

Including more **tracking information in the trigger** would open up possibilities to trigger directly on LLP signatures with displaced tracks...

Tracking in the trigger

ATLAS FastTracKer (FTK):

a hardware-based track finder designed to provide HLT with **all tracks** ($p_T > 1$ GeV) for every L1-accepted event

Tracking limited to regions-of-interest:

FTK removes region-of-interest limitation:

Key concepts:

- 1. Parallelize 16 (ϕ) x 4 (η) = 64 overlapping towers
- 2. Utilize information only from silicon tracking layers
- 3. Pattern matching on Associative Memory chips
- 4. Linearized track fit on FPGAs (no minimization!)

Optimization of FTK pattern bank

- The heart of the FTK system is the pattern bank
- More patterns = higher efficiency. But we are limited by hardware capacity (~1 billion pattern addresses available)

• FTK utilizes variable-width patterns to increase track-finding efficiency

• Maximum pattern width is optimized separately for patterns in barrel and endcap region

Fine resolution patterns:

Wide patterns:

Too many track fits!

Combination of 8 coarse resolution hits from different silicon layers

Optimization of FTK pattern bank

Impact of variable-width pattern size on FTK track-finding efficiency:

• The gains in track-finding efficiency decrease with additional patterns:

What if we allocate some of these patterns for displaced tracks instead?

How could the pattern bank be used to trigger on LLPs?

- Nominal pattern bank is trained with tracks satisfying: $|d_0| < 2 \text{ mm}$, $p_T > 1 \text{ GeV}$
- Allocate 30% of patterns in bank to high- d_0 tracks: $|d_0| < 10$ mm
 - Require $p_T > 5$ GeV for high-d₀ patterns

How could the pattern bank be used to trigger on LLPs?

- Nominal pattern bank is trained with tracks satisfying: $|d_0| < 2 \text{ mm}$, $p_T > 1 \text{ GeV}$
- Allocate 30% of patterns in bank to high- d_0 tracks: $|d_0| < 10$ mm
 - Require $p_T > 5$ GeV for high-d₀ patterns

Track-finding efficiency of **all tracks**:

Track-finding efficiency of **p**_T > **5 GeV** tracks:

Displaced tracks in trigger!

How could the pattern bank be used to trigger on LLPs?

- Nominal pattern bank is trained with tracks satisfying: $|d_0| < 2 \text{ mm}$, $p_T > 1 \text{ GeV}$
- Allocate 30% of patterns in bank to high- d_0 tracks: $|d_0| < 10$ mm

Backup

Searching for multiple LLP signatures is critical for covering a wide lifetime range

Material map

- Constructed from low mass DVs in data
- Beam pipe and support tubes added by hand
- Removes 42% of fiducial volume

- Uncertainty on background estimates:
 - o DV uncertainties evaluated in sub-regions with different DV track multiplicity
 - Muon uncertainties evaluated by varying d₀ requirements
- Signal uncertainties:

Source of uncertainty	Relative impact on ϵ_{sel} for signal events [%]
Total	18–20
Tracking and vertex reconstruction	15
Displaced muon efficiency	10–12
Prompt muon efficiency	$(0.01-0.7) \oplus (0.9-4.0)$
ISR modeling in MC simulation	3
Pileup modeling	0.37–2.2
Hadronic energy scale and resolution (affecting $E_{\rm T}^{\rm miss}$)	2.1
Integrated luminosity of dataset	1.7
Trigger efficiency	< 0.2

$$\mathcal{W}_{\text{RPV}} = \mu_i l_i h_u + \lambda_{ijk} l_i l_j \bar{e}_k + \lambda'_{ijk} l_i q_j \bar{d}_k + \lambda''_{ijk} \bar{u}_i \bar{d}_j \bar{d}_k$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

	Module	Function	Туре	Number
IM	Input Mezzanine	Cluster silicon pixel (Pixel)	Mezzanine	128
		and silicon microstrip (SCT)		
		hits, format module data		
DF	Data Formatter	Transport and duplicate mod-	ATCA	32
		ule hit data to $\eta - \phi$ towers		
AUX	Auxiliary Card	Transport coarse-resolution 8-	VME	128
		layer hit data to AMB		
AMB	AM Board	Transport hit data to AM	VME	128
AM	Associative Memory	Match hits to patterns	ASIC	8192
AUX	Auxiliary Card	Evaluate track candidates in	VME	128
		matched patterns		
SSB	Second Stage Board	Add remaining hits to 8-layer	VME	32
		tracks, fit, remove overlaps		
FLIC	HLT Interface Board	Interface to ATLAS readout	ATCA	2

FTK details

Produces ≈ 1 million sectors … Takes several weeks! (Sensitive to detector alignment, beamspot position)

40 billion patterns generated, 1 billion patterns in hardware... Takes ≈ 1 week (Also sensitive to detector alignment, beamspot position)

Adaptability of FTK system: inner detector module positions

0

100

-300

$$\tilde{p}_{i} = \sum_{l=1}^{N} C_{il} x_{l} + q_{i}$$

$$\tilde{p}_{i} = \sum_{l=1}^{N} C_{il} (x_{l}' + \Delta_{l}) + q_{i}$$

$$= \sum_{l=1}^{N} C_{il} x_{l}' + (\sum_{l=1}^{N} C_{il} \Delta_{l} + q_{i})$$

$$q_{i}'$$

 q_i : fit constants x_l : hit coordinates \tilde{p}_i : track parameters

