The Ultra-Compact X-ray Freeelectron Laser: Connections to C³

J. B. Rosenzweig UCLA Dept. of Physics and Astronomy *Future Collider Workshop* January 21, 2022

*Work supported by NS Award PHY-1549132, Center for Bright Beams and US DOE HEP grants DE-SC0009914 and DE-SC0020409

Vision of a university-scale UC-XFEL

UC-XFEL Recipe Ingredients

- Ultra-high field electron cryogenic RF photoinjector source
- High gradient cryogenic accelerator
- Frontier simulation of collective effects (CSR, IBS)
- Beam measurements at micron/fs scale
- Very high frequency RF devices
- Advanced magnetic systems micro-undulators and quads
- Machine-learning based control
- Compact X-ray optics
- Understanding of science case

First two points enable entire scenario, based on very high field cryogenic RF field research

Hybrid cryo-undulator: Pr-based, SmCo sheath; λ =9 mm up to 2.2 T

UC-XFEL as stepping stone for particle physics: pushing linear collider energy frontier

- Exponential growth over time in available energy U
 - Livingston plot: "Moore's Law" for accelerators
- Generational history
- Next generation will operate at much higher fields
 - US GARD Panel: regardless of technique GV/m for multi-TeV e+e-
 - Fields higher by >30. New methods needed.
 - Exotic techniques: **plasma**, direct laser, dielectric, **advanced RF**
 - There is a long road to GeV/m
 - Multi-TeV plasma collider >2035
 - How do we move strategically?

Livingston plot showing Moore's law for HEP discovery

Compact XFEL is intertwined with future colliders

- Major investments in "factory" scale XFEL (European XFEL, LCLS-II) counter-balanced by 5th generation-inspired initiatives
 - BELLA laser-plasma accelerator
 - EuPRAXIA plasma accelerator FEL, "stepping stone" to HEP
 - On ESFRI roadmap, 300MEuro project hitting the real axis
 - *CompactLight*, X-band RF spin-off from CERN
- Ultra-Compact XFEL (UC-XFEL) collaboration
 - Decade-long effort based on investments from DARPA, Keck, NSF, DOE
 - Extremely attractive new paradigm *for XFEL-as-university-lab-laser*

A joint road map: UC-XFEL, large scale XFEL and linear colliders

- The path to plasma linear collider is long (-2040).
- Technological *and physics* stepping stones are needed to maintain continuous interest
 - EuPRAXIA is existence proof for stepping stone concept viability
 - Plasma-based FEL is not a very high quality light source
 - Plasma-based FEL does not aid HEP horizon immediately
- UC-XFEL aids effort in cold copper collider
 - Full scale FEL frontiers as well

The Ultra-Compact FEL Design Realized UCLA

New Journal of Physics

The open access journal at the forefront of physics

PAPER • OPEN ACCESS

An ultra-compact x-ray free-electron laser

J B Rosenzweig^{15,1}, N Majernik¹, R R Robles¹, G Andonian¹, O Camacho¹, A Fukasawa¹, A Kogar¹,

G Lawler¹, Jianwei Miao¹, P Musumeci¹, B Naranjo¹, Y Sakai¹, R Candler², B Pound², C Pellegrini^{1,3},

C Emma³, A Halavanau³, J Hastings³, Z Li³, M Nasr³, S Tantawi³, P. Anisimov⁴, B Carlsten⁴,

F Krawczyk⁴, E Simakov⁴, L Faillace⁵, M Ferrario⁵, B Spataro⁵, S Karkare⁶, J Maxson⁷, Y Ma⁸,

J Wurtele⁹, A Murokh¹⁰, A Zholents¹¹, A Cianchi¹², D Cocco¹³ and S B van der Geer¹⁴

- Hide full author list

Published 21 September 2020 • © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute

of Physics and Deutsche Physikalische Gesellschaft

New Journal of Physics, Volume 22, September 2020

Citation J B Rosenzweig et al 2020 New J. Phys. 22 093067

2190 Total downloads

Deutsche Physikalische Gesellscha

Turn off MathJax

Share this article

FEL begins life with high brightness electron UCLA beam source: *the RF photoinjector*

- Laser gating to fs-to-ps level
- RF capture violent acceleration
 - Accelerating fields 10x DC sources
 - Strong RF focusing effects
- Preserve phase space structure
 - Control pulse expansion
 - Minimize emittance growth
 - Creation, manipulation of single component plasma (emittance compensation)
- Frontier RF engineering
- Photocathode physics
- Advanced laser techniques
- Apply lessons to linear collider source
- *Key technology is high field acceleration*

Traditional UCLA-designed RF photoinjector operated at ~100 MV/m

Rethink points in red when fields much enhanced.

High gradient acceleration at cryogenic temperature

- Recent X-band work by SLAC-UCLA collaboration on cryogenic RF cavity research gives breakthrough surface fields
 - ASE lowers heating, thermal expansion small, enhanced strength
- 200 MV/m surface fields -> 500 MV/m. ~300 MV/m limit (dark current)
- Transformative applications in photoinjector brightness
 - ...and system compactness

Practical concern: dark current emission UCLA

Mitigation schemes must be explored

at SLAC

A. D. Cahill, et al., Phys. Rev. Accel. Beams 21, 061301 (2018)

Must Meet Challenges of Dark Current

• Fowler-Nordheim emission

 $J_{\rm FN}(\mathbf{s}) = \frac{A(\boldsymbol{\beta}(\mathbf{s})E_0(\mathbf{s}))^2}{\phi_w t^2(y)} \exp\left(\frac{-B\boldsymbol{\nu}(y)\phi_w^{3/2}}{\boldsymbol{\beta}(\mathbf{s})E_0(\mathbf{s})}\right)$

- Field enhancement factor β (s) typically ~50
 - Surface contamination at atomic level
 - Large dark current
 - Threat to applications (esp. low charge)
 - Active measures (fast kickers)
- Add surface coating
 - Silicon oxynitride eliminates emitters; high work function
 - Graphene (transparent)
 - Experimental demonstration needed
 - Needle tests at AWA
- Bulk material solutions

UCLA C-band Cryogenic Photoinjector Project

• Cryogenic C-band photoinjector at extreme high brightness for FEL

Profit from very high fields (up to 250 MV/m) on photocathode; *higher spatial harmonics*

Enhanced 6D Brightness with high field

- High current (nearly 20 A) at 100 pC
- Very low energy spread required new approach to IBS calculation

Record 6D brightness predicted, factor of >40 above original LCLS

Intra-beam scattering and slice energy spread

 At high beam density, the slice energy spread may be dominated by intra-beam scattering

$$\frac{d\sigma_{\gamma}^2}{dz} = \frac{2r_e^2 N_b}{\sigma_x \sigma_z \epsilon_{nx}} \qquad \text{Implicit scaling on } E_0$$

 Challenging simulations of state-of-art problem (GPT with Barnes-Hut algorithm)

IBS theory due to Z. Huang (SLAC-PUB)

See Robles et al. PRAB,

-Implications for beam compressibility in UC-XFEL and C³ ⁻ Experiments at UCLA Extending brightness frontier: lower emission temperature

- MTE of photo-electrons can be notably lower at cryo-temperatures
- Eliminate Fermi-Dirac tail. Cold beams

Issue: two-photon and heating effects due to high laser power

Half-cell cryogenic photo-emission test stand UCLA

- Up to 120 MV/m field in 0.5 cell geometry, in cryostat
- Precision solenoid, very low emittance diagnostics (10 meV MTE)
 - Load-lock photocathode assembly. Look to add polarized e- capabilities?

0.5 cell gun with copper cathode (no load lock) Under construction (support from NSF CBB)

Cryo-emission eliminates Fermi-Dirac tail, cold beams

Asymmetric emittance beams for linear colliders

- Eliminate electron damping ring
- Round-to-flat beam transformation
- Very small 4D transverse emittance needed
 - Consistent with magnetized photocathode \downarrow

Performance of round-to-flat beam transformation

- Emittance 90 nm-rad before splitting (increase of 75% over XFEL case)
- Splitting nearly ideal in simulation, including space-charge effects
- Scaling to nC level implies S-band operation

Bunch compression to 4 kA in two phases

- **The good:** with high gradients, compact system, LSC-CSR microbunching instabilities do not have time to assert themselves
- The bad: we must preserve a much smaller emittance at the same peak current as LCLS
- The familiar: compress first at 400 MeV using two small opposing chicanes to 400 A peak current. Must linearize LPS using 6th harmonic cavity (34.3 GHz, from XLS project). Emittance growth very small. *Technology relevant to C³compressors*
- Apply IFEL compression for second phase important for FELs overall (e.g. XLEAOO at SLAC)

Slice energy spread (top), emittance (middle) and current profile for microbunches (bottom)

Cryo-RF for applications at UCLA

- 50 year old C-band klystron brought back to life
- Developing generation of cryostats for testing at UCLA
 - Low power C-band cryogenic properties, anomaly <20 deg K
 - Cool-down dynamics, alignment
 - Cryogenic photo-emission test stand
- Implications for C³ gun and test cavities

Common issues for linear accelerator sections

- Advantage: strong RF focusing.
 - Example in Radiabeam GRIT project, same linac structure, 40% of gradient
 - Inherent aspect of emittance control

• Testing new model for emittance dilution from wakefields, space-charge

- New code to simulate short-range BBU
- Extension to long range wakes in C³

Micro- (meso-) Undulator

- Advanced manufacturing methods (MEMS)
- Cryo-undulator (Pr, Dy based) already a mature technology (RadiaBeam)
 - 6-9 mm period
 - Up to 2 T fields, narrow gap
- Application to positron sourcery in LCs
- Useful at LCLS?

Proposed manufacturing of few mm-period Halbach array MEMS 0.4 mm period microundulator

R. Candler (UCLA EE)

Pr-based 7 mm period cryo-undulator

Avoiding resistive wall wakefields in undulator

- Sub-mm gap can provoke large resistive wakes in undulator
- Periodic microbunching alleviates this problem
- Also under study for MaRIE >40 keV XFEL; key advantage in both cases
- Applicable to LCLS-X, positron source for LC

Leveraging the present to the future

UCLA

- UC-XFEL should be realized
 - High impact photon science
 - C3 demonstrator
- UCLA SAMURAI Lab
 - \$5M construction, \$7M legacy eqpt.
- Investments from agencies
 - DOE HEP (injector); DARPA (C-band); NSF CBB (dynamics, cryo-emission test stand); DOE NNSA (MaRIE FEL)
- Utilize collaborative expertise
 - UCLA, SLAC, UCB, LANL, Cornell Rome, UNM, ASU, INFN, FAMU, PSI, RadiaBeam, Pulsar
 - Concentrate on key techniques
- Major funding:
 - DOE BES EFRC
 - NSF STC

NSF STC: HELCAT

- High Energy Lightsources from Compact Accelerator Techniques (HELCAT)
- UCLA, Stanford/SLAC, Cornell, Berkelely, NIU, NMU, FSU
- Theme: intersection of advanced accelerators and new light sources
 - Formal mechanism for creating umbrella for UC-XFEL/C³
 - Extend 5th gen light source collaboration beyond cryo-RF approach
 - Theme areas: high gradient structures; plasma acceleration; FEL/applications
- ~\$3M/year funding
 - Structure like CBB, major emphasis on student/post-doc funding, networking
 - Total of ~30 funded participants
- Preproposal due on February 1