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Opportunities in AI/ML for CCC



Places for AI/ML to contribute
Design optimization
• More efficient search of computationally-expensive simulations

(e.g. multi-objective, multi-fidelity Bayesian optimization) 

• Fast upstream models to aid start-to-end optimization

• Can leverage standards + uniform tools for data and I/O of accelerator simulations being used in 
AI/ML (e.g. LUME, xopt)

Online modeling and control
• Fast feed-forward corrections (e.g. RF,  trajectory; can also help reduce RF costs)

• Sample-efficient online characterization and optimization

• Finding sources of systematic error between simulations and real machine, tracking time-varying 
deviations (e.g. can aid meeting of desired tolerances and improve physics models)

• Online models to provide additional diagnostic information 

Fault detection and prediction
• Exclude faulty read-backs from feedback (e.g. BPMs)

• Identify (and possibly compensate for) impending RF trips



Simulation and Modeling Infrastructure



Simulation Data Set

Optimizer

LUME – light source 
unified modeling 
environment
https://www.lume.science/Impact

ASTRA
GPT
Bmad
Genesis
SRW
work in progress:
elegant

CNSGA, Bayesian algorithms, sampler
https://christophermayes.github.io/Xopt/index.html

Standards for easy interfacing of simulations and optimizers

https://www.lume.science/


h5 files with beam distributions
à easy to use with open-pmd-beamphysics
https://github.com/ChristopherMayes/openPMD-
beamphysics

location

particle group

select 
projection to 
plot

https://github.com/ChristopherMayes/openPMD-beamphysics




IMPACT-T models 
running online
(LCLS and FACET-II 
injectors)

Read inputs online 
(including laser 
distribution) 

Standard interfaces 
make this easily 
extendable to new 
systems

LCLS

FACET-II



Optimization Methods



moreless
assumed knowledge of machine

Model-Free 
Optimization

Observe performance 
change after a setting 

adjustment

à estimate direction 
toward improvement

Model-guided 
Optimization

Update a model  
during each search 

step

à use model to 
help select the next 

point

Global Modeling 
+ Feedforward 
Corrections

Make fast / accurate 
system model

à provide guess for 
good settings

à make predictions 
about machine

gradient descent
simplex

Bayesian optimization
Reinforcement learning

ML system models +
inverse models

Optimization approaches can leverage different amounts of data 



Bayesian Optimization

Set up probabilistic model

à e.g. Gaussian Process

Iteratively refit model while 
sampling new points

Use model predictions and 
uncertainty to guide search for 
optimum while sampling
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Figs. courtesy Johannes 
Kirschner (ETH Zurich)
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Safe Optimization: Example on SwissFEL

Add these requirements as safety constraints in Bayesian optimization 

Don’t just want to maximize FEL energy à we have other requirements

• pulse energy drops below certain level à angry users!

• beam losses go above a certain threshold à damage machine!

timestep

J. Kirschner et al., ICML 2019

safety constraints
objective

GP output for one timestep

tuning input



Can design GP kernel based on expected physics
• GP optimization at LCLSà tune focusing magnets to maximize FEL pulse energy
• Make GP kernel informed by how quads correlate with FEL

Magnet 1
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ag
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t 

2

x-ray pulse energy

Including expected correlation improves ability 
to model the data with fewer samples

Model-informed Bayesian optimization

J. Duris et al., PRL, 2020
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.124801
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J. Duris et al., PRL, 2020
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GP optimization

GP w/ correlations     

standard optimizer



Joint modeling of hysteresis and beam propagation

Optimization improvements when including hysteresis

BO on sys. 
with hysteresis

Hybrid BO on sys.
with hysteresis

Differentiable Hysteresis Modeling for Accelerators

R. Roussel



Multi-objective Bayesian optimization
Use Bayesian optimization for serial online 
multi-objective optimization

More sample-efficient and fills out front 
efficiently than other methods

à Extremely useful for characterization
à Experimental demos have been done at AWA 

and LCLS photoinjectors 

Can enforce 
smooth 

exploration

(no wild changes 
in input settings)

R. Roussel, et al., PRAB (2021)
https://journals.aps.org/prab/pdf/10.1103/PhysRevAccelBeams.24.062801



Bayesian 
Exploration 𝛼 𝒙 = 𝜎 𝒙 %

!"#

$

𝑝! 𝑔! 𝒙 ≥ ℎ! Ψ(𝒙, 𝒙𝟎)

Adaptive sampling

Unknown 
constraints

Proximal biasing

Roussel et. Al. Nat. Comm. 2021
R. Roussel



Characterizing Photoinjector Emittance at AWA

Roussel et. al.
Nat. Comm. 2021

Was also recently used at FACET-II to characterize a 10-dimensional 
input space wrt emittance and beam matching parameters 



Fast / Accurate Modeling



Accelerator simulations including 
nonlinear and collective effects are 
powerful tools… 

ML models can provide fast 
approximations for end-to-end 

simulations

…but are computationally expensive

Fast Modeling

< ms execution speed





Finding Sources of Systematic Error Between Simulations and Measurement

Many non-idealities and miscalibrations are not included 
in physics simulations à identifying these can help 
correct them and improve meeting of tolerances

à ML model allows fast / automatic exploration of possible 
error sources

à Can be applied to time-varying changes as well

Here: calibration offset in solenoid strength found automatically with neural network model 
(trained first in simulation, then calibrated to machine)





Examples of virtual diagnostics for longitudinal phase space:
mix of adaptively calibrated physics models and ML-based prediction…



Test shot within trained distribution  Out-of-distribution

O. Convery, PRAB, 2021

Sample Number (Time Ordered)

Neural network with 
quantile regression 
predicting FEL pulse 
energy at LCLS

unseen regionstest data

L. Gupta

Longitudinal phase space beam profiles

• BNN Predictions
• ASTRA Simulation

White area – values 
left out of training

A. Mishra

LCLS injector transverse distributions on out-of-training distribution shots,  
neural network ensemble

Bayesian 
neural network 
predicting 
scalar 
parameters for 
the LCLS-II 
injector 

https://github.com/lipigupta/FEL-
UQ/blob/main/notebooks/QR--
Interp-2.ipynb

ML-based Uncertainty Quantification
Prediction uncertainties can be leveraged in online modeling and control

Can also help identify and correct for drifting inputs

Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

out-of-distributionin-distribution

https://github.com/lipigupta/FEL-UQ/blob/main/notebooks/QR--Interp-2.ipynb


•

Example at LCLS: 

- Two settings scanned  (L1S phase, BC2 peak current); 
trained neural network model to map longitudinal 
phase space to settings

- Compared optimization algorithm with/without warm 
start

What if we are far away from some target beam parameters and want to switch between configurations quickly?

à Use global model to give an initial guess at settings, then refine with local optimization (“warm start”)
•

Faster optimization with warm starts from global models

A. Scheinker, A. Edelen, et al., PRL 121, 044801 (2018)
sim study w/ a THz FEL: A.  Edelen, et al., FEL’17



Another way: run optimizer on learned online model

• Round to flat beam transforms are challenging to optimize

• Took measured scan data at Pegasus (UCLA) 

• Trained neural network  model to predict fits to beam image

• Tested online multi-objective optimization over model (3 quad settings) given present readings of other inputs 

E. Cropp et al., in preparation



Can use neural network to provide first guess at solution, 
then fine tune with other methods…

E. Cropp et al., in preparation

Hand-tuning in seconds vs. tens of minutes

Boost in convergence speed for other algorithms

can work even under distribution 
shift in some cases



RF system control

Transport delays, variable heat load, complex dynamics

For RF control, water or cryogenic based cooling systems need to be controlled too

à Fluctuations can impact RF resonant frequency  (compensated with increased forward power)
à RF is a major driver of machine costs (both in designing RF overhead and in operational costs)

Transport delays, variable heat load
Efficient servers were not enough 
à needed better control of cooling system

https://googleblog.blogspot.com



Existing Feedforward/PID Controller

Similar techniques can be applied to cryogenic systems

Model Predictive Controller

Applied model predictive control with a neural 
network model trained on measured data

~ 5x faster settling time + no large overshoot
(reduce RF costs)

Gun Water
System Layout

Resonant frequency controlled via temperature 
• Long transport delays and thermal responses
• Two controllable variables: heater power + flow valve 

aperture

Note that the oscillations are largely due to the transport delays and water recirculation, rather than PID gains

Edelen, IPAC’15 ; Edelen, TNS, 2016

Example from FAST RF gun



Classifying SRF Trips



laser
profile

automated control
+ optimization

digital twins + online modeling
(planning, model-based control, finding differences between sim/machine)

diagnostics
(reconstruct / analyze beam)

anomaly detection 
failure prediction

J. Duris

C. Emma

+ need uncertainty 
quantification for all

Several major areas for ML to play a role

incorporate 
physics

information

extract unexpected
relationships

(feed into control / design)



Data 
processing

Data 
processing

FACET-II LCLS

Integration of AI/ML and Online Accelerator Modeling / Control 
• Many proof-of-principle results for AI/ML modeling and control of accelerators à usually in limited ranges of operating conditions or 

addressing isolated problems (e.g. only optimization, only modeling)

• Now need to address integration into dedicated operation: 

- Need a comprehensive facility-agnostic software/hardware ecosystem that can couple HPC, online simulation, and AI/ML
- Need to assess/address robustness challenges of dedicated operation and coupling different types of AI/ML tasks together
- Coupling of AI/ML, traditional algorithms, and human-in-the-loop operations (provide useful/actionable information rather than 

add to information overload)

à Prototyping a comprehensive AI/ML ecosystem for online modeling/control  at smaller-scale test facilities would (1) provide 
substantial benefit in bringing this technology to maturity and (2) provide a roadmap for scaling it  up to larger facilities


