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XCC – XFEL Compton Collider 

Run  at 125 GeV 30% of the time

and  at 140 GeV 70% of the time

to calibrate the BR measurements at 125 GeV.  

This produces model independent Higgs coupling 
measurements, just l
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The XCC is presented as a possible lower 
cost alternative to the ILC and C3 250 GeV 
e+e- Higgs factories.  It is being pursued 
because every e+e- linear collider proposal to 
date has been rejected due to its high cost.
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Potential Cost Savings with the XCC

C3 250 GeV  Capital Cost Estimate XCC 140 GeV  Capital Cost Estimate

With these estimates the XCC would be 60% of the cost of C3 250 GeV.   But we can’t 
seriously make this claim at this time.  There are still too many components of the XCC 
machine that need work -- such as the focusing optics to take the x-ray beam from the end 
of the undulator to the Compton interaction point.



4

XCC physics backgrounds 

34 2 1

33 2 1

Due to the narrow Higgs resonance 
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†
Higgs Hadronic Events Higgs minbias/BX
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At XCC, luminosity dominated by beamstahlung 's for 115 GeV s γγγ <
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s s >

XCC and ILC physics background comparison   

laser 
2

      3
 

.1     O c4 aE lE
1000.0   

p
C

ti
Cm  X

e

e

x γ − 
= = 

 Non-linear QED included in 
    Optical Compton Simulation

Optical
129.1
147.9
155.4

n XCC 
4

  
1
2

125.0
125.1

3
2

125.16

γ

 maxE (GeV)γγ

Non-linear QED included in XCC Simulation.
Use 45 MeV leading edge width (set by  ) 
to directly detect 10 MeV with energy scan.

E

H

e σ−

Γ ≥

Use comparable XCC and ILC
backgrounds to justify using ILC
σXBR measurement errors in
EFT analysis

33
2

1
dL

/d
E

 (1
0

 cm
 s

/0
.1 

G
eV

)
γγ

−
−



6

Can beamstrahlung be suppressed with a shorter bunch length?
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To achieve beamstrahlung suppression we need
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1 nC , σz=20 µm vs 0.52 nC , σz=1 nm
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Extreme short bunch suppresses beamstrahlung luminosity – but high field (as high as 10% of Schwinger)  kicks 
e+e- pairs and degraded energy electrons to very large angles   - don’t see how we can extract beam.  We have 
traded one form of background for another.
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Luminosity for e- γ e-H at Ecm=140 GeV  
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Pinching in e- γ collisions due to e+ from pair production;  I.P. geometric  e- σx,σy=5.1 nm
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XCC Coupling Errors Using  EFT Higgs Program
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What is required to fully match ILC precision? 
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Energy upgrade to Ecm=280 GeV for Higgs Self Coupling Study 

2012 Study

Optimum sensitivity at 280 GeV

Used optical laser for Compton scattering

sγγ =

( ) @ 280 GeV      ( ) @ 500 GeV  
Need to redo the KEK  study with the XCC  spectrum.
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15
We need to reliably focus a =1 m transverse radius 720 mJ/pulse x-ray laser 
beam down to a point with =  nm .    

If we backed off to a Compton collision point 100 m from the primary IP, the req

a
a

γ
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µ uired laser
beam radius would grow to =24 nm but with a 30% loss in  luminosity (the angular 
spread of the Compton photons produces this sensitivity to Compton IP - primary IP distance).

aγ γγ
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XFEL for XCC 

XCC spec 700 mJ

Undulator

• Due to high B field and electron energy, quantum diffusion 
energy spread must be properly included in the design.

• With permanent magnet undulator, peak B field slightly above 
1 Tesla, <β>=12m, 1 keV X-rays with pulse energy ~ 0.07 J 
can be produced with negligible diffusion

• With seeded helical FEL and taper of undulator K parameter after 
saturation, pulse energy of 0.7 J can be achieved

• Overall length of XFEL is ~ 100 m

GENESIS Simulation of XCC XFEL DesignXFEL Parameters

Zhirong Huang and Adham Naji Claudio Emma
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h

Current soft x-ray (~1 keV) FEL's operate at a few mJ/pulse maximum,  while XCC calls for 700 mJ/pulse

 To actually test the production and focussing of soft x-rays with >> few mJ per pulse, Joe Frisc

o

 has suggested 
that we look into adding a 1nC/pulse, 120 nm emittance cryo RF gun injector to LCLS-I to see if that change 
alone could produce a soft x-ray beam with >> few mJ/pu

This c
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3re than just an XCC/C  demonstration project -- there have been indications of interest in the 
photon science community for a ~100 mJ/pulse soft x-ray beam.   The low  gun could also enhance hard 
x-r

ε
ay production with LCLS-I.

,

Initial study 
transport of nC/pulse  

0.12 m beam 
down LCLS-I linac:
(Joe Duris)

x yγε µ=

Projections:
εx 0.27 µm
εy 0.18 µm

C3-injector/XCC/BES Demonstration Project



SXRSS with low emittance 
1 nC beam from LCLS

Resistive wall wake fields added

Joe Duris

Nov 24,2021



Elegant simulation of LINAC

• Collimate to 742 pC
• L1 phase: -16 deg
• L1X phase: -160 deg
• L2 phase: -39 deg
• L3a (26-27) phase: 0 deg
• L3b (28-30) phase: -80.6 deg (remove chirp)

L3b phase = 0

L3b phase = -80.6 deg 
(max)

742 pC



Undulator line focusing optics

• 8400 MeV and 0.12 um emittance 
• Normal lattice

• E-beam transverse rms 11 um => X-ray waist of ~22 um => Rayleigh length of ~ 1 
m => significant diffraction within a gain length (0.8 m). Also affects mode 
quality?

• Shot noise power of 7 kW (compared to 800W with 1 kA, 4 GeV beam 
leading to 10% SASE breakthrough)

• Reduce FODO quad gradients to 21% of normal
• E-beam x-rms 22 um => 42 um waist => Rayleigh range of 5 m (1.2 m gain length)
• Shot noise ~ 2.5 kW

• Seeding
• ~50 kW limit to seed power (significantly exceeding this can damage spectral 

collimating optics in SXRSS monochromator)
• FEL Pierce parameter rho ~ 0.18%



LCLS Low ε Summary

• Preliminary results: 
• >110 mJ of 1 keV X-rays within 20 undulators 
• <0.01% FWHM bandwidth (0.18% rms) 

• Caveats:
• Simulation done with pure seed so FWHM bandwidth may be a 

bit larger with a full simulation (full sim: first stage, clean 
spectrum, second stage)

• Resistive wall wake fields
• increased FWHM bandwidth by 40%
• decreased pulse energy by 12%
• Increasing undulator chamber gap from 5 to 7 mm could halve 

wake field strength.
• Shaping the beam (shortening) may shape space charge wake

740 pC 110 mJ

Most 
energy 
within 
0.01% BW 

Radiation 
size (m)
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XCC Summary

• The XCC at Ecm=125-140 GeV can measure absolute Higgs couplings with an accuracy of 
order 1% .   This is pretty close to the ILC precision (see slide 12 to judge for yourself).  To fully 
match the ILC Higgs coupling accuracy, a way must be found to increase [production X 
detection eff.] for e- γ e- H at Ecm=140 GeV by about a factor of 5.

• The Higgs self coupling can be studied via γγHH if the XCC energy is upgraded to Ecm=300 
GeV.   Given that σ(γγHH) ~ σ(e+e- ZHH), the Higgs self coupling sensitivity for XCC will 
probably be comparable to ILC at Ecm=550 GeV.   Hence the XCC at Ecm=140-300 GeV could 
provide the same Higgs physics program as the ILC at Ecm=250-550 GeV, with the exception 
that the XCC would not measure the top Yukawa coupling.

• The XCC at Ecm=140 GeV might provide a significant cost saving with respect to C3 at 250 
GeV;  perhaps the same can be said about XCC at Ecm=140-300 GeV versus C3 at Ecm= 250-
550 GeV.  Further study is required to determine if this is actually the case.

• The XCC design for a 700 mJ/pulse 1keV XFEL by Zhirong Huang and Adham Naji has been 
validated by Claudio Emma using the GENESIS program.  This energy/pulse is more than two 
orders of magnitude larger than current XFEL’s.

• As a step in the direction of larger pulse energies, Joe Duris has demonstrated that the LCLS-I 
soft x-ray undulator could deliver ~100 mJ/pulse with < 0.01% FWHM bandwidth if LCLS-I can 
be outfitted with a 1nC/pulse, 120 nm emittance gun.   Such a project would serve XCC, C3, 
and BES.
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