The XFEL Compton Collider (XCC) Higgs Factory

Tim Barklow Future U.S. Colliders Workshop Jan 20, 2022

XCC – XFEL Compton Collider

Potential Cost Savings with the XCC

C³ 250 GeV Capital Cost Estimate

XCC 140 GeV Capital Cost Estimate

CCC		GeV	250			
		MeV/m	70			
	Sub-Domain		М\$	%	%	
	Inje	ectors	301	8		
Sources	Damp	ing Rings	461	12	35	
	Beam	Transport	563	15		
Main Linas	Cryo	module	357	10	22	
	C-band	d Klystron	871	23		
ID	Beam Delivery and FF		295	8	12	
IP		IR	184	5	15	
	Civil Eng		204	5		
Support Inf.	Commo	n Facilities	396	11	19	
	Cryo-plant		101	3		
	Total		3733	100		

ХСС		GeV	140			
		MeV/m	70			
	Sub-Domain		M\$	%		
	Injectors		200	9		
Sources	FEL		200	9	26	
	Beam Transport		197	9		
Main Lines	Cryomodule		200	9	20	
Iviain Linac	C-band Klystron		488	22	50	
	Beam Delivery and					
IP	FF	F 148		7	15	
	IR		184	8		
	Civil Eng		114	5		
Support Inf.	Common Facilities 396				28	
	Cryo-plant		133	6		
	Total		2260	100		

With these estimates the XCC would be 60% of the cost of C³ 250 GeV. **But we can't** seriously make this claim at this time. There are still too many components of the XCC machine that need work -- such as the focusing optics to take the x-ray beam from the end of the undulator to the Compton interaction point.

XCC physics backgrounds

Due to the narrow Higgs resonance the Higgs rate at XCC is that of a 10^{34} cm⁻² s⁻¹ e^+e^- collider even though the $\gamma\gamma$ and $e^-\gamma$ luminosity for $\sqrt{\hat{s}} > 100$ GeV is $\sim 10^{33}$ cm⁻² s⁻¹

The background is not resonant and so background will be typical of a 10^{33} cm⁻² s⁻¹ e^+e^- collider

XCC and ILC physics background comparison

In lieu of CAIN+WHIZARD MC production and analysis, use hadronic production with $\sqrt{\hat{s} / s} > 0.4$

as a measure of the Higgs background

Non-linear QED included in XCC Simulation. Use 45 MeV leading edge width (set by $e^- \sigma_E$) to directly detect $\Gamma_H \ge 10$ MeV with energy scan.

Machine	e^{-} Energy (GeV)	N _e - (nC)	$\sigma_z(\mu m)$	Polarization	$N_{ m Higgs}$ / yr †	$N_{\text{Hadronic Events}} \left(\sqrt{\frac{s}{s}} > 0.4 \right) / N_{\text{Higgs}}$	$N_{ m minbias/BX}$	
Optical	86.5	1.0	20	90% e -	30,000	536	50	
XCC	62.5	1.0	20	90% e ⁻	32,000	165	9.5	◄
ILC	125	3.2	300	$-80\% e^{-} + 30\% e^{+}$	42,000	138	1.3	
ILC	125	3.2	300	$+80\% e^{-}$ $-30\% e^{+}$	28,000	55	1.3	
					$^{\dagger}1 \text{ yr} = 1.0$	$\times 10^7$ s		

Can beamstrahlung be suppressed with a shorter bunch length?

Beamstrahlung suppression depends on bunch charge and length

Quantum ParameterRadiation Probability
$$\chi_{av} \approx \frac{5}{12} \frac{N\alpha \tilde{\lambda}_c^2}{\sigma_r \sigma_z^*}$$
 $W \approx \alpha \chi_{av}^{2/3} \frac{\sigma_z^*}{\tilde{\lambda}_c}$ $\alpha \chi^{2/3} \gtrsim I$ $W < I$ reaching fully non-
perturbative regimeacceptable radiation
loss

 $W \propto N^{\frac{2}{3}} \sigma_x^{-\frac{2}{3}} \sigma_z^{\frac{1}{3}}$ To achieve beamstrahlung suppression we need $(\eta N)^{\frac{2}{3}} \sigma_x^{-\frac{2}{3}} \sigma_z^{\frac{1}{3}} = (0.14 \text{ nC})^{\frac{2}{3}} (9.27 \text{ nm})^{-\frac{2}{3}} (10 \text{ nm})^{\frac{1}{3}}$, $\eta = \text{Compton conv. eff.} \approx 0.5$ $\Rightarrow \sigma_z = 0.27 \text{ nm}$ for N = 1nC, $\sigma_x = 5.42 \text{ nm}$

1 nC , σ_z =20 µm vs 0.52 nC , σ_z =1 nm

$E_{\gamma\gamma}(GeV)$

Extreme short bunch suppresses beamstrahlung luminosity – but high field (as high as 10% of Schwinger) kicks e+e- pairs and degraded energy electrons to very large angles - don't see how we can extract beam. We have traded one form of background for another.

Luminosity for $e^{-\gamma} \rightarrow e^{-H}$ at $E_{cm} = 140 \text{ GeV}$

To match the ILC Higgs coupling precision the XCC must detect 1 $e^-\gamma \rightarrow e^-H$ event at 140 GeV per 50 – 100 $\gamma\gamma \rightarrow H$ events produced at 125 GeV

Pinching in e⁻ γ collisions due to e⁺ from pair production; I.P. geometric e⁻ $\sigma_x, \sigma_y = 5.1$ nm

This pinching creates very high fields \Rightarrow prob. to radiate γ in time slice >1 and CAIN program terminates

For $e^{-\gamma}$ go to asymmetric $e^{-\epsilon_x} \epsilon_y$ to handle debilitating beamstrahlung

job	σ_{z} (μ m)	$\boldsymbol{\varepsilon}_{x}$ (nm)	$\boldsymbol{\varepsilon}_{y}$ (nm)	a_{γ_x} (nm)	a_{γ_y} (nm)	$L_{e^{-\gamma} \max}$ (10 ³² cm ⁻² s ⁻¹ /bin)	$L_{e^{-\gamma} \text{ tot}} (10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	E_{max} (10 ¹⁸ V/m)
4918	10	120	120	10.2	10.2	0.9	244	4.0×10 ⁻³
4923	20	120	120	10.2	10.2	0.7	16.02	4.8×10^{-4}
4951	20	1200	12	32.4	10.2	1.2	1.33	3.8×10^{-5}

Fields as high as E_{Schwinger}/250

Scan parameter space in search of maximum $e^-\gamma \rightarrow e^-H$ events / yr job $d_{cp} (\mu m) \sigma_z (\mu m) \varepsilon_x (nm) \varepsilon_y (nm) \qquad L_{e^-\gamma} / yr, (fb^{-1}) \qquad e^-\gamma \rightarrow e^-H$ events / yr $139 < E_{e^-\gamma} < 140 \text{ GeV} \qquad \theta_{e^-} > 3 \text{ mrad}$ $4992 \quad 60 \quad 10 \quad 120 \quad 120 \qquad 8.5 \qquad 35$ $4993 \quad 60 \quad 20 \quad 120 \quad 120 \qquad 5.1 \qquad 21$ $4965 \quad 60 \qquad 10 \quad 1200 \quad 12 \qquad 17.3 \qquad 70$

4993	60	20	120	120	5.1	21 .	
4965	60	10	1200	12	17.3	70	
4955	60	20	1200	12	17.1	69	
5240	10	10	1200	12	32.2	131	

XCC Coupling Errors Using EFT Higgs Program

Use ILC σXBR measurement errors

for XCC:

	ILC	XCC
coupling a	∆ a (%)	∆ a (%)
HZZ	0.57	1.2
HWW	0.55	1.2
Hbb	1.0	1.4
Ηττ	1.2	1.4
Hgg	1.6	1.7
Нсс	1.8	1.8
Ηγγ	1.1	0.77
ΗγΖ	9.1	10.0
Ημμ	4.0	3.8
Γ_{tot}	2.4	3.8
${\Gamma_{\mathrm{inv}}}^\dagger$	0.36	—
$\Gamma_{\mathrm{other}}^{\dagger}$	1.6	2.7
[†] 95% C.L. 1	imit	

ILC:
$$0.5 \times 10^6 \ e^+e^- \rightarrow \text{ZH events}$$

full 2 ab⁻¹ $\sqrt{s} = 250 \text{ GeV program}$

XCC: $0.5 \times 10^6 \ \gamma \gamma \rightarrow \text{H} \text{ events}$ $4000 \ e^- \gamma \rightarrow e^- \text{H} \text{ events}$ 3 years $\gamma \gamma \rightarrow \text{H} @ \sqrt{s} = 125 \text{ GeV}$ 8 years $e^- \gamma \rightarrow e^- \text{H} @ \sqrt{s} = 140 \text{ GeV}$ assuming $n_{\text{bunch}} = 76 \rightarrow 290$

$-80\% e^-$, $+30\% e^+$ polarization:						
	250 (GeV	350 (350 GeV		GeV
	Zh	$\nu \overline{\nu} h$	Zh	$\nu \overline{\nu} h$	Zh	$\nu \overline{\nu} h$
σ	2.0		1.8		4.2	
$h \rightarrow invis.$	0.86		1.4		3.4	
$h ightarrow b\overline{b}$	1.3	8.1	1.5	1.8	2.5	0.93
$h ightarrow c\overline{c}$	8.3		11	19	18	8.8
h ightarrow gg	7.0		8.4	7.7	15	5.8
$h \to WW$	4.6		5.6^{*}	5.7^{*}	7.7	3.4
h ightarrow au au	3.2		4.0^{*}	16^*	6.1	9.8
$h \rightarrow ZZ$	18		25^*	20^*	35^*	12^{*}
$h ightarrow \gamma \gamma$	34^*		39^{*}	45^{*}	47	27
$h ightarrow \mu \mu$	72		87^*	160^{*}	120	100
a	7.6		2.7^{*}		4.0	
b	2.7		0.69^{*}		0.70	
$\rho(a,b)$	-99.17		-95.6^{*}		-84.8	

What is required to fully match ILC precision?

ILC	XCC
∆ a (%)	∆ a (%)
0.57	0.94
0.55	0.95
1.0	1.0
1.2	1.1
1.6	1.3
1.8	1.3
1.1	0.33
9.1	10.0
4.0	3.6
2.4	2.3
0.36	_
1.6	1.2
imit	
	ILC Δa (%) 0.57 0.55 1.0 1.2 1.6 1.8 1.1 9.1 4.0 2.4 0.36 1.6 1.6 imit

ILC: $0.5 \times 10^6 \ e^+e^- \rightarrow \text{ZH events}$ full 2 ab⁻¹ $\sqrt{s} = 250 \text{ GeV program}$

XCC:
$$1.0 \times 10^6 \ \gamma \gamma \rightarrow \text{H} \text{ events}$$

20,000 $e^- \gamma \rightarrow e^-$ H events

The $\gamma\gamma \rightarrow$ H sample only requires 3 more years (a) $\sqrt{s} = 125$ GeV with no change to the machine.

The 20,000 $e^-\gamma \rightarrow e^-$ H sample, however, is problematic. A dedicated 30 GeV accelerator for the one FEL in the $e^-\gamma$ mode would double the rate for $e^-\gamma \rightarrow e^-$ H from 500 to 1000 events/year. An additional luminosity upgrade is needed, however, to acquire 20,000 $e^-\gamma \rightarrow e^-$ H events in a reasonable time ---unsolved problem.

Energy upgrade to Ecm=280 GeV for Higgs Self Coupling Study

2012 Study

A feasibility study of the measurement of Higgs pair creation at a Photon Linear Collider

Shin-ichi Kawada¹,* Nozomi Maeda¹, Tohru Takahashi¹, Katsumasa Ikematsu², Keisuke Fujii³, Yoshimasa Kurihara³, Koji Tsumura⁴, Daisuke Harada⁵, and Shinya Kanemura⁶
¹Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
²Department für Physik, Universität Siegen, D-57068, Siegen, Germany
³High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
⁴Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
⁵Centre for High Energy Physics, Indian Institute of Science, Bangalore, 560012, India and ⁶Department of Physics, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan

FIG. 3. Statistical sensitivity $(S_{\rm stat})$ as a function of $\gamma\gamma$ collision energy. Black and red dots show the $\delta\kappa = +1$ and $\delta\kappa = -1$ cases.

Optimum sensitivity at $\sqrt{s_{\gamma\gamma}} = 280 \text{ GeV}$ Used optical laser for Compton scattering

 $\sigma(\gamma\gamma \to HH) @ \sqrt{s} = 280 \text{ GeV} \approx \sigma(e^+e^- \to ZHH) @ \sqrt{s} = 500 \text{ GeV}$ Need to redo the KEK $\gamma\gamma \to HH$ study with the XCC $\gamma\gamma$ spectrum.

Compton Collision Point

62.6
0.03/0.03
0.12/0.12
5.4/5.4
20
0.63
120x76
9.7
0.06
12.1/12.1

laser beam	
Laser λ (nm)	1.19
Laser ω_0 (keV)	1.04
$\pmb{a}_{_{\gamma}}$ (nm)	15.3
non-linear QED ξ^2	0.38
aser pulse length = $2\beta{\gamma}$ (μ m)	40.0
Laser pulse energy (J)	0.72

We need to reliably focus a $a_{\gamma}=1 \mu m$ transverse radius 720 mJ/pulse x-ray laser beam down to a point with $a_{\gamma}=15$ nm.

If we backed off to a Compton collision point 100 μ m from the primary IP, the required laser beam radius would grow to a_{γ} =24 nm but with a 30% loss in $\gamma\gamma$ luminosity (the angular spread of the Compton photons produces this sensitivity to Compton IP - primary IP distance).

Currently working on x-ray beam layout near IP

Luminosity dependence of laser angle α assuming 2 mrad crossing angle for e⁻ beams

job	Laser α (mrad)	d_{cp} (μ m)	$\sigma_{_{z}}~(\mu { m m})$	$\boldsymbol{\varepsilon}_{x,y}$ (nm)	a_{γ} (nm)	$N_{ m Higgs}/ m yr$
5014	0	60	20	120	15.3	32,000
5015	2	60	20	120	15.3	32,000 .
5016	14	60	20	120	15.3	25,000
5017	28	60	20	120	15.3	12,000

XFEL for XCC

XFEL Parameters

Zhirong Huang and Adham Naji

XFEL parameters	Approx. value
Electron energy	$31 { m GeV}$
normalized emittance	120 nm
RMS energy spread $\langle \Delta \gamma / \gamma \rangle$	0.05%
bunch charge	1 nC
Undulator B field	$\gtrsim 1 \text{ T}$
Undulator period λ_u	9 cm
Average β function	12 m
x-ray λ (energy)	1.2 nm (1 keV)
x-ray pulse energy	0.7 J

- Due to high B field and electron energy, quantum diffusion energy spread must be properly included in the design.
- With permanent magnet undulator, peak B field slightly above • 1 Tesla, $<\beta>=12m$, 1 keV X-rays with pulse energy ~ 0.07 J can be produced with negligible diffusion
- With seeded helical FEL and taper of undulator K parameter after saturation, pulse energy of 0.7 J can be achieved
- Overall length of XFEL is ~ 100 m •

GENESIS Simulation of XCC XFEL Design

C³-injector/XCC/BES Demonstration Project

Current soft x-ray (~1 keV) FEL's operate at a few mJ/pulse maximum, while XCC calls for 700 mJ/pulse

To actually test the production and focussing of soft x-rays with >> few mJ per pulse, Joe Frisch has suggested that we look into adding a 1nC/pulse, 120 nm emittance cryo RF gun injector to LCLS-I to see if that change alone could produce a soft x-ray beam with >> few mJ/pulse.

This could be more than just an XCC/C³ demonstration project -- there have been indications of interest in the photon science community for a ~100 mJ/pulse soft x-ray beam. The low ε gun could also enhance hard x-ray production with LCLS-I.

17

SXRSS with low emittance 1 nC beam from LCLS

Resistive wall wake fields added

Joe Duris

Nov 24,2021

Elegant simulation of LINAC

- Collimate to 742 pC
- L1 phase: -16 deg
- L1X phase: -160 deg
- L2 phase: -39 deg
- L3a (26-27) phase: 0 deg
- L3b (28-30) phase: -80.6 deg (remove chirp)

Undulator line focusing optics

- 8400 MeV and 0.12 um emittance
- Normal lattice
 - E-beam transverse rms 11 um => X-ray waist of ~22 um => Rayleigh length of ~ 1 m => significant diffraction within a gain length (0.8 m). Also affects mode quality?
- Shot noise power of 7 kW (compared to 800W with 1 kA, 4 GeV beam leading to 10% SASE breakthrough)
- Reduce FODO quad gradients to 21% of normal
 - E-beam x-rms 22 um => 42 um waist => Rayleigh range of 5 m (1.2 m gain length)
 - Shot noise ~ 2.5 kW
- Seeding
 - ~50 kW limit to seed power (significantly exceeding this can damage spectral collimating optics in SXRSS monochromator)
 - FEL Pierce parameter rho ~ 0.18%

LCLS Low ε Summary

- Preliminary results:
 - >110 mJ of 1 keV X-rays within 20 undulators
 - <0.01% FWHM bandwidth (0.18% rms)
- Caveats:
 - Simulation done with pure seed so FWHM bandwidth may be a bit larger with a full simulation (full sim: first stage, clean spectrum, second stage)
- Resistive wall wake fields
 - increased FWHM bandwidth by 40%
 - decreased pulse energy by 12%
 - Increasing undulator chamber gap from 5 to 7 mm could halve wake field strength.
 - Shaping the beam (shortening) may shape space charge wake

15

50

740 pC

Time (fs)

(A) 8.45 (GeV) 8.40 (B) 8.35 (B) 8.35

8.30

-50

XCC Summary

- The XCC at E_{cm}=125-140 GeV can measure absolute Higgs couplings with an accuracy of order 1%. This is pretty close to the ILC precision (see slide 12 to judge for yourself). To fully match the ILC Higgs coupling accuracy, a way must be found to increase [production X] detection eff.] for $e^{-\gamma} \rightarrow e^{-H}$ at E_{cm} =140 GeV by about a factor of 5.
- The Higgs self coupling can be studied via $\gamma\gamma \rightarrow$ HH if the XCC energy is upgraded to E_{cm}=300 GeV. Given that $\sigma(\gamma\gamma \rightarrow HH) \sim \sigma(e^+e^- \rightarrow ZHH)$, the Higgs self coupling sensitivity for XCC will probably be comparable to ILC at E_{cm} =550 GeV. Hence the XCC at E_{cm} =140-300 GeV could provide the same Higgs physics program as the ILC at E_{cm} =250-550 GeV, with the exception that the XCC would not measure the top Yukawa coupling.
- The XCC at E_{cm} =140 GeV might provide a significant cost saving with respect to C³ at 250 • GeV; perhaps the same can be said about XCC at E_{cm} =140-300 GeV versus C³ at E_{cm} = 250-550 GeV. Further study is required to determine if this is actually the case.
- The XCC design for a 700 mJ/pulse 1keV XFEL by Zhirong Huang and Adham Naji has been • validated by Claudio Emma using the GENESIS program. This energy/pulse is more than two orders of magnitude larger than current XFEL's.
- As a step in the direction of larger pulse energies, Joe Duris has demonstrated that the LCLS-I • soft x-ray undulator could deliver ~100 mJ/pulse with < 0.01% FWHM bandwidth if LCLS-I can be outfitted with a 1nC/pulse, 120 nm emittance gun. Such a project would serve XCC, C^3 , and BES.