

On behalf of MicroBooNE

NATIONAL

ACCELERATOR LABORATORY

SLAC November, 2021

Introduction MicroBooNE The DL Analysis Results Summary

Introduction

Overview Motivation

MicroBooNE

Detector specs Working principles

DL analysis

Analysis choices Analysis chain

Results

DL results Other results

Summary

11/2/2021

Overview

- The standard model of particle physics
 - Particle content
 - Forces
- Although describes well much of phenomenology, we know it is only an approximate theory.
- DM, Gravity, g-2, and more...
- Many question arising specifically from the neutrino sector.

Overview

0 Sstrange C g U Higgs bosor W boson e electron **Neutrinos live here!**

- Neutrinos are the most abundant massive particle in the Universe.
- Electrically neutral
- Very small cross section.
- Present many anomalies which cannot be explained within the SM (e.g., mass).

۲

٠

۲

MicroBooNE's new results from the 2-body CCQE DL-based search for an electron neutrino excess

Overview

- Neutrino oscillation is a quantum mechanical effect, occurring on macroscopic scales
- First predicted in 1957 by Pontecorvo
- Neutrinos are produced in interaction eigenstate (v_e , v_μ , v_τ), but propagate in mass eigenstate (v_1 , v_2 , v_3)

$$|\nu_i(L)\rangle = e^{-i\frac{m_i^2 L}{2E}} |\nu_i(0)\rangle$$

L- baseline E_{v-} neutrino energy

 $P_{\alpha \to \beta} = \left| \left\langle \nu_{\beta}(L) \left| \nu_{\alpha}(0) \right\rangle \right|^{2}$

$$p_{\alpha \to \beta} = \left| \sum U_{\alpha i}^* U_{\beta i} e^{-\frac{i(m^2 L)}{2E}} \right|^2$$

Overview

- Neutrino oscillation is a quantum ۲ mechanical effect, occurring on macroscopic scales
- Neutrinos are produced in interaction • eigenstate (v_e , v_μ , v_τ), but propagate in mass eigenstate (v_1, v_2, v_3)
- We can probe only Δm^2 •
- Simple example 2 neutrino case

$$\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
 L-baseline
 $E_{v_{-}}$ neutrine
 $p_{osc} = \sin^2(2\theta) \cdot \sin^2\left(1.27 \cdot \frac{\Delta m_{12}^2 L}{E_v}\right)$ $\Delta m_{12}^2 \equiv m$

$$\varDelta m_{12}^2 \equiv m_1^2 - m_2^2$$

Overview

- SM case 3 flavors
- PMNS matrix has
 - 3 mixing angles
 - 1 CP violating phase
- Different L/E probe different mixing angles

Overview

11/2/2021

Motivation

Motivation

Introduction MicroBooNE The DL Analysis Results Summary

0.8

0.6

0.4

1.2

L/E, (meters/MeV)

1.4

PRD 64,112007 (2001)

Motivation

Motivation

MicroBooNE

Introduction MicroBooNE The DL Analysis Results Summary

180 collaborators 40 postdocs 60 grad students (40% international students)

36 institutions

5 countries

MicroBooNE

MicroBooNE

Introduction MicroBooNE The DL Analysis Results Summary

SLAC ubooners:

- Ran Itay
- Yun-Tse Tsai
- Tracy Usher
- Mark Convery
- Kazu Terao

MicroBooNE

MicroBooNE

Short Baseline Neutrino (SBN)

program

- SBND
- ICARUS

MicroBooNE

- Same beam
- Similar baseline
- using LArTPC to better distinguish e/γ

MicroBooNE

- Micro Booster Neutrino Experiment
 - First large scale LAr TPC constructed in the U.S.
 - 85 ton Liquid Argon (LAr) TPC (active mass)
 - Operating since 2015
 - Longest Running LArTPC ~500k neutrinos collected
 - Surface detector (~5 kHz cosmics)
- Goals
 - LEE search
 - Cross-section measurements
 - R&D for DUNE

MicroBooNE

• Three wire planes

٠

٠

- 2 induction planes • (2,400 wires each).
- Sense Wires V V wire plane waveforms 1 collection plane Liquid Argon TPC (3,456 wires). **Charged Particles** 3mm wire pitch. ---**>**0 -->0 -->0 Cathode ->0 • 32 8" PMT Plane ←_{Edrift} 273V/cm t Y wire plane waveforms

MicroBooNE

MicroBooNE

Introduction MicroBooNE The DL Analysis Results Summary

Vs.

MicroBooNE

MicroBooNE

Introduction MicroBooNE The DL Analysis Results Summary

µBooNE ν_{μ} Run 3493 Event 41075, October 23rd, 2015 75 cm

• Shower Vs Track distinct topologies

MicroBooNE

- Shower Vs Track distinct topologies
- γ Vs e Gap from vertex

MicroBooNE

- Four independent analyses targeting different final states, hence probing different theoretical models
- Single photon analysis
 - 1. Targeting NC $\Delta \longrightarrow$ N γ hypothesis (1 γ 0p, 1 γ 1p)

- Analyses searching for a ve rate excess
 - 2. Restricting to quasi-elastic kinematics (1e1p)
 - 3. MiniBooNE-like final states (1eNp, 1e0p)
 - 4. All v_e final states (**1eX**)

MicroBooNE

- Four independent analyses targeting different final states, hence probing different theoretical models
- Single photon analysis
 - 1. Targeting NC $\Delta \longrightarrow$ N γ hypothesis (1 γ 0p, 1 γ 1p) arXiv: 2110:00409

- Analyses searching for a ve rate excess
 - 2. Restricting to quasi-elastic kinematics (1e1p)
 - 3. MiniBooNE-like final states (1eNp, 1e0p)
 - 4. All v_e final states (**1eX**)

MicroBooNE

Introduction MicroBooNE The DL Analysis Results Summary

No evidence for enhance rate of single photons from NC $\Delta \rightarrow N\gamma$ decay Disfavor the interpretation of the MiniBooNE anomalous excess as a factor of 3.18 enhancement to the rate NC $\Delta \rightarrow N\gamma$, in favor of the nominal prediction at 94.8% CL

MicroBooNE

Introduction MicroBooNE The DL Analysis Results Summary

Elevate this normalization scaling to a continuous parameter, x_{Δ} , and perform a fit to extract the best fit and classical confidence intervals, via the Feldman-Cousins procedure

Small under fluctuation results in best fit $x_{\Delta} = 1$, SM is within 1 sigma

MicroBooNE

Introduction MicroBooNE The DL Analysis Results Summary

- Four independent analyses targeting different final states, hence probing different theoretical models
- Single photon analysis
 - 1. Targeting NC $\Delta \longrightarrow N\gamma$ hypothesis (1 γ 0p, 1 γ 1p)

- \bullet Analyses searching for a ν_e rate excess
 - 2. Restricting to two-body quasi-elastic kinematics (1e1p) -DL
 - 3. MiniBooNE-like final states (1eNp, 1e0p)
 - 4. All v_e final states (**1eX**)

arXiv: 2110.14054 ; arXiv: 2110.14080 ; arXiv: 2110.14065 ; arXiv: 2110.13978

http://ubdllee.org

MicroBooNE

- Unfold 2018 MiniBooNE excess under ve hypothesis
 - **Considers only Ev dependence** •
- Derive scaling template to model enhancement of intrinsic ve rate in the Booster Neutrino Beam
- Does the data prefer the v_e prediction or this simple "eLEE" model?
 - $\Delta \chi^2$ hypothesis testing

6

LEE Model Weight

1

MicroBooNE

Introduction MicroBooNE The DL Analysis Results Summary

Three independent searches across multiple single electron final states

• Exclusive two-body charged-current quasi-elastic (CCQE) ve scattering [1e1p]

• Semi-inclusive v_e scattering without final state pions $[1eNp0\pi (N \ge 1) + 1e0p0\pi]$

MicroBooNE

Introduction MicroBooNE The DL Analysis Results Summary

Three independent searches across multiple single electron final states

MicroBooNE

- In today's talk I will be presenting results based on ~6.67x10²⁰ (DL specific) protons-on-target (POT) from Runs 1-3
- These were blind analyses, so all development and validation took place first using a small unblinded 0.4x10²⁰ POT from Run 1 sample (~1/17th the size) and 0.1x10²⁰ POT from Run 3 sample
- Sequential unblinding
 - 700-1200 MeV
 - 500-700 MeV
 - 200- 500 MeV

The Exclusive analysis, looking only for CCQE two-body topologies using deep-learningbased reconstruction

The DL Analysis

Introduction MicroBooNE The DL Analysis Results Summary

Exclusive analysis, looking only for CCQE two-body topologies (1ℓ1p).

- Expected signal peaks at low energies (200-500) MeV.
- The dominant cross section in these energies is QE.
- QE interactions are better understood.

The DL Analysis

 $E_{\nu}^{range} *$

 E_{ν}^{QE-p}

 $E_{\nu}^{QE-\ell}$

 Δ^{QE}

Introduction MicroBooNE The DL Analysis Results Summary

Exclusive analysis, looking only for CCQE two-body topologies $(1\ell 1p)$.

$$E_{p} + E_{\ell} - (m_{n} - E_{b})$$

$$\frac{E_{p}(m_{n} - E_{b}) + \frac{1}{2}(m_{\ell}^{2} - (m_{n} - E_{b})^{2} - m_{p}^{2})}{(m_{n} - E_{b}) + |\vec{p}_{p}|\cos\theta_{p} - E_{p}}$$

$$\frac{E_{\ell}(m_{n} - E_{b}) + \frac{1}{2}(m_{p}^{2} - (m_{n} - E_{b})^{2} - m_{\ell}^{2})}{(m_{n} - E_{b}) + |\vec{p}_{\ell}|\cos\theta_{\ell} - E_{\ell}}$$

$$\sqrt{\left(E_{\nu}^{QE-p}-E_{\nu}^{QE-\ell}\right)^{2}+\left(E_{\nu}^{QE-p}-E_{\nu}^{range}\right)^{2}+\left(E_{\nu}^{QE-\ell}-E_{\nu}^{range}\right)^{2}}$$

- Selected events, are kinematically consistent with two-body scattering.
- purely physics-based separation, e.g.,
 - forward going protons.
 - reconstructed energy consistent with CCQE.
 - near unity Bjorken-X.
- Not many background interactions pass these requirements.

The DL Analysis

Introduction MicroBooNE The DL Analysis Results Summary

Deep-learning-based reconstruction

- Treating our data as sets of images.
- An example 90 × 90 cm² image, cropped around interaction.
- Allows utilizing the great capabilities of deep learning algorithms.
- Pixel intensity integrated signal over 6 time-ticks.
- Pixel resolution is 3×3.3 mm.

The DL Analysis

- Use of SSCN, more efficient for our sparse data (<0.5% important pixels) cvpr:2018; arxiv:1706.01307
- UResNet a hybrid of Unet & ResNet ٠
- Single hot labels ٠ Highly Ionizing Particles (protons) Minimum Ionizing Particles (μ , π^{\pm}) Track shower (e, γ), delta (knock-on electron), Shower Michel electrons (decay of muons)
- Predictions in 2D different network per plane ٠

0.859

0.992

0.996

Shower

0.998

0.823

The DL Analysis

- Multiple Particle IDentification
- Image based identification CNN
- For each event gives 5 scores (p, e, γ, μ, π)

- Orthogonality Cut (1e1p or 1µ1p candidates)
 Shower fraction in most shower-like cluster.
 - > 0.2 \rightarrow 1*e*1*p* candidate.
 - <= $0.2 \rightarrow 1\mu 1p$ candidate.

The DL Analysis

- Broad data quality selection.
 - E.g., forward going proton
- Variation of "Random BDT Forest" taking the average score. Reduces bias and variation. Especially important for low statistics event samples.
 - 19 kinematic variables (e.g., QE consistency)
 - 4 ionization variables (e.g., shower labeled pixel fraction)
- Particle content criteria.
 - MPID
 - π^0 rejection

- Broad data quality selection.
 - E.g., forward going proton
- Variation of "Random BDT Forest" taking the average score. Reduces bias and variation. Especially important for low statistics event samples.
 - 19 kinematic variables (e.g., QE consistency)
 - 4 ionization variables (e.g., shower labeled pixel fraction)
- Particle content criteria.
 - MPID
 - π^0 rejection

The DL Analysis

- Broad data quality selection.
 - E.g., forward going proton
- Variation of "Random BDT Forest" taking the average score. Reduces bias and variation. Especially important for low statistics event samples.
 - 19 kinematic variables (e.g., QE consistency)
 - 4 ionization variables (e.g., shower labeled pixel fraction)
- Particle content criteria.
 - MPID
 - π^0 rejection

- The selected background v_{μ} simulation sample suffers from low statistics.
- We use an empirical fit to the simulation and produce background predictions (reducing uncertainties from MC size)

- Final selection (MC)
 - Purity 75% (all CCQE events)
 - Efficiency 6.6% (all CCQE events)
- Compromising efficiency for high purity.

The DL Analysis

Introduction MicroBooNE The DL Analysis Results Summary

• We use dedicated π^0 samples to measure our dominant background.

The DL Analysis

- A small (within systematic) deficit is observed.
- We use a data-driven method to re-weight the MC.
- All simulations with π^0 at the final state, are then re-scaled (for the 1e1p and 1µ1p)
- Also serves as a standard candle for our reconstruction.

arXiv: 2110.11874

Introduction

MicroBooNE

The DL Analysis Results

The DL Analysis

Introduction MicroBooNE The DL Analysis Results Summary

We use the $1\mu 1p$ sample to constrain.

- Broad data quality selections
- Variation of "Random BDT Forest" taking the average score.
- MPID proton score > 0.9 rejecting cosmic rays
- Final selection:
 - Purity of 77.3% (all CCQE events)
 - Efficiency of 4.3% (all CCQE events)

The DL Analysis

- Detector systematic uncertaies are evaluated by comparing the detector variation to the central value MC <u>MicroBooNE Pub-note 1075</u>
- Detector systematics MC samples suffer from large statistical fluctuations.
- We mitigate that by smoothing the MC spectra using a **KDE** algorithm

The DL Analysis

Introduction MicroBooNE The DL Analysis Results Summary

- Applying the constraint procedure gives the final systematic uncertainty budget.
- Allows comparison to data and not to GENIE model

$$\Sigma = \begin{pmatrix} \Sigma^{ee} \Sigma^{e\mu} \\ \Sigma^{\mu e} \Sigma^{\mu\mu} \end{pmatrix}$$

$$\mu^{e, \text{ constr.}} = \mu^{e} + \Sigma^{e\mu} \left(\Sigma^{\mu\mu}\right)^{-1} \left(x^{\mu} - \mu^{\mu}\right)$$
$$\Sigma^{ee, \text{ constr.}} = \Sigma^{ee} - \Sigma^{e\mu} \left(\Sigma^{\mu\mu}\right)^{-1} \Sigma^{\mu e}$$

where x^{μ} is the 1µ1p observation, and µ^µ (µ^e) is the 1µ1p (1e1p) prediction

- Applying the constraint procedure gives the final systematic uncertainty budget.
- Notice constraint results in reduction of systematic uncertainty.

Introduction MicroBooNE The DL Analysis Results Summary

Results

Results

Results

t the data to MC	Nominal Predictions						
t the data to MC	Range	H_0		H_1			
		$\chi^2_{ m CNP}/ m dof$	p-value	$\chi^2_{ m CNP}/ m dof$	p-value		
	$200500\mathrm{MeV}$	6.06/3	0.138	8.30/3	0.053		
	$2001200\mathrm{MeV}$	23.02/10	0.024	25.37/10	0.014		
	Constrained Predictions						
full analysis range LEE enhanced range	Range	H_0		H_1			
		$\chi^2_{ m CNP}/ m dof$	p-value	$\chi^2_{ m CNP}/ m dof$	p-value		
	$200500\mathrm{MeV}$	7.91/3	0.075	17.3/3	0.002		
calculated using	$2001200\mathrm{MeV}$	25.28/10	0.014	36.35/10	5.0×10^{-4}		
1							

First looking at agreement

- $H_0 MB = 0$
- $H_1 MB = 1$
- 200-1200 f
- 200-500 I
- P-value are c frequentist approach

Results

data ta MC	Nominal Predictions						
data to MC	Range	H_0		H_1			
		$\chi^2_{ m CNP}/ m dof$	p-value	$\chi^2_{ m CNP}/ m dof$	<i>p</i> -value		
	$200–500{\rm MeV}$	6.06/3	0.138	8.30/3	0.053		
	$2001200\mathrm{MeV}$	23.02/10	0.024	25.37/10	0.014		
	Constrained Predictions						
nalysis range enhanced range	Range	H_0		H_1			
		$\chi^2_{ m CNP}/ m dof$	p-value	$\chi^2_{ m CNP}/ m dof$	p-value		
	$200500\mathrm{MeV}$	7.91/3	0.075	17.3/3	0.002		
ated using ach	$2001200\mathrm{MeV}$	25.28/10	0.014	36.35/10	5.0×10^{-4}		

First looking at the data to MC agreement

- $H_0 MB = 0$
- $H_1 MB = 1$
- 200-1200 full analysis range
- 200-500 LEE enhanced range
- P-value are calculated using **frequentist** approach

Second Comparing the two hypothesis using a $\Delta \chi^2$ formalisem

- H₀ LEE (x=0)
- $H_1 LEE(x=1)$
- Rejecting H_1 with **3.6** σ
- Using CLs to mitigate under-fluctuation results in a reduced significance of 2.4σ

Results

Finally, signal strength.

- Best fit LEE(x=0)
- We reject LEE(x=0.25) with 90% C.L.

In conclusion, the analysis reported in this paper is inconsistent with observation of an excess of ν_e events in the signal range. Hence, these results disfavor explanations of the MiniBooNE low energy excess based purely on ν_e interactions.

Results

Introduction MicroBooNE The DL Analysis Results Summary

Three independent searches across multiple single electron final states

• Exclusive two-body charged-current quasi-elastic (CCQE) ve scattering [1e1p]

+

e⁻

• Semi-inclusive v_e scattering without final state pions $[1eNp0\pi (N \ge 1) + 1e0p0\pi]$

• Inclusive v_e scattering [1eX]

Results

Results

Results

Introduction MicroBooNE The DL Analysis Results Summary

Three independent searches across multiple single electron final states

• Exclusive two-body charged-current quasi-elastic (CCQE) ve scattering [1e1p]

• Semi-inclusive v_e scattering without final state pions $[1eNp0\pi (N \ge 1) + 1e0p0\pi]$

Results

Introduction MicroBooNE The DL Analysis Results Summary

χ^2/ndf , eLEE _{x=0}								
Energy region	w/o constr.	w/ constr.						
$(0, 2500) { m MeV}$	12.55/25	17.86/25						
	$p_{\rm val} = 0.982$	$p_{\rm val} = 0.848$						
$(0, 600) { m MeV}$	4.25/6	5.78/6						
	$p_{\rm val} = 0.643$	$p_{\rm val} = 0.448$						
χ^2/ndf , eLEE _{x=1}								
Energy region	w/o constr.	w/ constr.						
$(0, 2500) { m MeV}$	13.02/25	28.24/25						
	$p_{\rm val} = 0.976$	$p_{\rm val} = 0.297$						
$(0, 600) M_{eV}$	4.23/6	15.73/6						
(0, 000) MCV	$p_{\rm val} = 0.646$	$p_{\rm val} = 0.015$						

Inclusive ve scattering [1eX]

11/2/2021

Results

Finally, signal strength.

- Best fit LEE(x=0)
- We reject LEE(x=0.5) with 95.5% C.L.

Results

- v_e prediction adequately describes the data across many different kinematic quantities
- Observe v_e candidate event rates in general agreement **with or below** the predicted rates
- Results from LEE enhanced region

Introduction MicroBooNE The DL Analysis Results Summary

Summary

First series of results (1/2 the MicroBooNE data set)										
Reco topology Models	1e0p	1e1p	1eNp	1eX	e^+e^- + nothing	e⁺e⁻X	1γ0p	1 <i>ү</i> 1р	1γΧ	
eV Sterile v Osc	/	~	/	~						
Mixed Osc + Sterile v	1 [7]	1 [7]	V _[7]	1 [7]			/ [7]			
Sterile v Decay	[13,14]	[13,14]	[13.14]	[13,14]			[4,11,12,15]	1 [4]	[4]	
Dark Sector & Z' *	[2,3]				[2,3]	[2,3]	/ [1,2,3]	[1,2,3]	[1,2,3]	
More complex higgs *					[10]	[10]	[6,10]	[6,10]	[6,10]	
Axion-like particle *					[8]		1 [8]			
Res matter effects	1 [5]	/ [5]	/ [5]	/ [5]						
SM γ production							/	/	/	

- First eLEE searches, sets limits on many theoretical models
- Only ½ of the data procesed

Introduction MicroBooNE The DL Analysis Results Summary

Summary

Summary

Introduction MicroBooNE The DL Analysis Results Summary

First results

Introduction MicroBooNE The DL Analysis Results Summary

Summary

Summary

- Our results are found to be consistent with the nominal v_e expectations. No excess of v_e events is observed
- Best fit with simple MiniBooNE e model, on ³/₄ analyses is at 0
- Reject simple eLEE model of the MiniBooNE low energy excess at >97% for both exclusive and inclusive event classes
- We disfavor the interpretation of MiniBooNE LEE as a x3.18 enhancement of NC $\Delta \rightarrow N\gamma$ rate at 94.8% CL
- Paper on arxiv, and submitted to PRD+PRL.

Questions

