

The present and future Inner Tracking System of the ALICE experiment

Nicole Apadula

SLAC Seminar

October 19, 2021

NicoleApadula@lbl.gov

Evolution of the ALICE Inner Tracking System (ITS)

ALICE ITS1 2009 – 2019 Thickness of 1st layer: 1.14% X_o

Evolution of the ALICE Inner Tracking System (ITS)

Evolution of the ALICE Inner Tracking System (ITS)

BERKELEY

Motivation & Needs

- Motivation: QGP precision study
 - High precision measurement of heavy-flavor hadrons
 - Large range of p_T & rapidity, centrality & reaction plane binned
- Requirements:
 - Excellent tracking efficiency & resolution at low p_T
 - Large statistics with MB trigger
- Strategy:
 - Readout all Pb-Pb interactions at 50 kHz
 - Improve vertexing & tracking capabilities

Design Requirements: ITS2

- Improve impact parameter resolution (factor of 3 in $r\phi$, 5 in z)
 - Reduce beam-pipe diameter
 - 29 mm → 17.2 mm
 - Minimize distance between beam axis and first detector layer
 - 39 mm → 21 mm
 - Reduce pixel size
 - 50 μm x 425 μm → ~30 μm x 30 μm

6

Design Requirements: ITS2

- Improve impact parameter resolution (factor of 3 in $r\phi$, 5 in z)
 - Reduce beam-pipe diameter
 - 29 mm → 17.2 mm
 - Minimize distance between beam axis and first detector layer
 - 39 mm → 21 mm
 - Reduce pixel size
 - 50 μm x 425 μm → ~30 μm x 30 μm
- Increase tracking efficiency at low p_T (60% at 100 MeV/c)
 - Reduce material budget (sensors, power, cooling)
 - > 1% $X_o \rightarrow$ < 0.5% X_o inner layers
 - Added layer of silicon detectors

Design Requirements: ITS2

- Improve impact parameter resolution (factor of 3 in $r\phi$, 5 in z)
 - Reduce beam-pipe diameter
 - 29 mm → 17.2 mm
 - Minimize distance between beam axis and first detector layer
 - 39 mm → 21 mm
 - Reduce pixel size
 - 50 μm x 425 μm → ~30 μm x 30 μm
- Increase tracking efficiency at low p_T (60% at 100 MeV/c)
 - Reduce material budget (sensors, power, cooling)
 - > 1% $X_o \rightarrow$ < 0.5% X_o inner layers
 - Added layer of silicon detectors
- More statistics
 - Faster read-out (100 kHz for p+p collisions) for increased luminosity (10 nb⁻¹)

ITS₂ Projected Performance

ITS₁

ITS2 Physics: Heavy Flavor Examples

- Full reconstruction of B meson down to 1 GeV/c
- Λ_c baryon in Pb+Pb down to 2 GeV/c
- Access to the charmed baryon/meson ratio

ITS₂ Structure

Monolithic Active Pixel Sensors

Material /layer : 0.3% X₀ (IB), 1% X₀ (OB)

12.5 G-pixel camera (~10 m² active Si) Binary read-out

ALPIDE Sensor

180 nm CMOS Imaging Process

- In-pixel amplification, shaping, discrimination, Multi-Event Buffers (MEB)
- Moderate reverse bias (down to -6V) → Increases depletion region to collect more charge by drift
- Deep PWELL to shield NWELL of PMOS transistors

ALPIDE Requirements

Sensor requirements for the ALICE ITS Upgrade for Inner Barrel (IB) and Outer Barrel (OB) [1].

Parameter	IB	OB
Sensor thickness (µm)	50	100
Spatial resolution (µm)	5	10
Dimensions (mm ²)	15 × 30	15×30
Power density (mW cm^{-2})	300	100
Time resolution (µs)	30	30
Detection efficiency (%)	99	99
Fake hit rate ^a	10^{-5}	10^{-5}
TID radiation hardness ^b (krad)	2700	100
NIEL radiation hardness ^b	1.7×10^{13}	10 ¹²
$(1 \text{ MeV} n_{eq}/cm^2)$		

^a Per pixel and readout.

^b Including a safety factor of 10, revised numbers w.r.t. TDR.

ALPIDE Performance

- Tested at 10x lifetime NIEL level
- Performance similar before and after irradiation
- Chip-to-chip fluctuations negligible
- Fake hit rate
 - << 10⁻⁵ hits/pixel/event
- Resolution
 - 4-6 μm in operating range

ALICE ITS₂ Construction & Assembly

Inner Barrel

OB Module Production

ALICE

- Modules assembled with custom machine (ALICIA)
 - Aligned chips with +/- 5 μm precision
 - Can probe & automatic visual inspection
- Produced at 5 sites worldwide
 - Strasbourg, Bari, Liverpool, Pusan, Wuhan

ALICE ITS₂ Construction: Module assembly

Module assembly and distribution (100 μm) at Bari, Pusan, Liverpool, Strasbourg, Wuhan done

INF

Stave assembly

ALICE

ALICE ITS₂ Construction: Stave assembly, detector integration

ITS Outer Barrel Stave Structure

Outer Barrel (OB)

<radius> (mm): <u>194, 247</u>, 353, 405 Nr. staves: <u>24, 30</u>, 42, 48 Nr. Chips/layer: <u>6048 (ML)</u>, 17740 (OL) Power density < 100 mW / cm²

LBL built Middle Layers in Red

Length (mm): 900 (ML), 1500 (OL) Nr. modules/stave: 4 (ML), 7 (OL) Material thickness: ~ 1% X_0 Throughput (@100kHz): < 3Mb/s × cm⁻²

Stave Assembly Requirements

- ML (LBNL): 60 staves, 1 per week
- > 90% production yield
- Within 1 mm tolerance for planarity
 - Clearance for neighboring staves
- Noisy pixel rate below 10⁻⁵

Stave Assembly Dependencies

- Each Stave takes ~5-6 days to complete
 - I per week requirement for ML
- Modules arriving from 5 different sites
- Carbon Fiber Cold Plates & Space
 Frames from CERN
- Power & Bias Bus shipped through CERN

		9:00	9:30	10:00	10:30	11:00	11/30	12:00	12:30	13:00	13:30	14:00	14:30	15:00	15:30	16:00	16:50	17:00	17:30
DAY 1	CMM BASE STATION	HSR ME	TR.	CP PLAS	GARITY						HSL AS	SEMBLY					GLUE D	INING	
	HS TEST STATION			HSR SO	DERING				UARM 0	SLUING	TEST								
	CMM SPACE FRAME											1					I		
	CMM METROLOGY																		
	STAVE TEST STATION																		
				_															
DAY 2	CMM BASE STATION	HSL ME	TR.						_		HSR TC								
	HS TEST STATION			HSL SOL	DERING			TEST	UARM (SLUING	TEST								
	CMM SPACE FRAME												HSR TO	SF	GLUE D	IVING			
	CMM METROLOGY																		
	STAVE TEST STATION																		
DAY 3	CMM BASE STATION	HSL TO 1	(F			CP PLAN	ARITY	HCR AC	(EMBLY					GLUE D	RVING	_			
	HS TEST STATION			-															
	CMM SPACE FRAME			HSL TO	se.	GLUE D	INING												
	CMM METROLOGY					0000.0									_				
	STAVE TEST STATION											-							
	STATE TEST STATION											1							
DAY4	CMM BASE STATION	HSR ME	TR.					CP PLA	VARITY		HSL AS	SEMBLY					GLUE D	RYING	
	HS TEST STATION			HSR SOL	DERING				UARM 0	SLUING									
	CMM SPACE FRAME]													
	CMM METROLOGY			STAVE N	VETROLO	κgγ													
	STAVE TEST STATION					Į		P0/80/	R SOLD	RING		STAVE 1	TEST						
DAYS	CARA BASE STATION	100 100	10	-							Lot B Top								
UAT 5	LIST TEST STATION	The life	. n.	_							nak re		105 B 100		CILLE D	TALANCE.	_	in the second	_
	PLANA EPACE EPALAE			1101 0.01	OF RUNC			***		CALL LANSA	75.57		Post IV		GLUE DI				
	CHINA SPACE PRAME			Hac sol	eren ma			18.85	S POOLSE S	econtrola I	16.21								
	CMINE INTETROLOGY					1								-					
	STAVE TEST STATION	FE FOLD	aneg & L	PARM GL	onne							a nave	1691						

- HIC arrives
 - Tested and tab cut

- HIC arrives
 - Tested and tab cut
- 4 HICs glued to CP (1 HS)
 - Aligned within 20 μm of nominal

LICE

- HIC arrives
 - Tested and tab cut
- 4 HICs glued to CP (1 HS)
 - Aligned within 20 µm of nominal
- HS soldered & tested

- HIC arrives
 - Tested and tab cut
- 4 HICs glued to CP (1 HS)
 - Aligned within 20 µm of nominal
- HS soldered & tested
- HS aligned & glued under SF

- HIC arrives
 - Tested and tab cut
- 4 HICs glued to CP (1 HS)
 - Aligned within 20 μm of nominal
- HS soldered & tested
- HS aligned & glued under SF
- Stave gets final metrology

- HIC arrives
 - Tested and tab cut
- 4 HICs glued to CP (1 HS)
 - Aligned within 20 μm of nominal
- HS soldered & tested
- HS aligned & glued under SF
- Stave gets final metrology
- PB soldered to Stave & tested

- HIC arrives
 - Tested and tab cut
- 4 HICs glued to CP (1 HS)
 - Aligned within 20 µm of nominal
- HS soldered & tested
- HS aligned & glued under SF
- Stave gets final metrology
- PB soldered to Stave & tested
- Stave is folded & tested

- HIC arrives
 - Tested and tab cut
- 4 HICs glued to CP (1 HS)
 - Aligned within 20 µm of nominal
- HS soldered & tested
- HS aligned & glued under SF
- Stave gets final metrology
- PB soldered to Stave & tested
- Stave is folded & tested
- Stave is boxed & stored/shipped to CERN

Production completed in October `19

Planned deliverables: 60 staves (54 + 6 spares)

- Constructed 68 staves, 64 detector grade (no more than 1 dead chip per HS)
- Rate ~1/week
- 17 trips made delivered 4 at a time
 - Last trip made October 2019

https://newscenter.lbl.gov/2019/09/19/h ow-to-get-a-particle-detector-on-aplane/

ALICE ITS₂ Half Barrel Assembly

- All half barrels complete by end of 2019
- Commissioning began mid 2019 2021 (before installation into cavern)

~72000 chips (65% yield) ~2600 modules (85% yield) ~280 staves (95% yield)

On-surface commissioning

- 24/7 from July 2019 December 2020
- Verification of detector performance and stability
 - Monitor voltage, current, temperature
 - Threshold scans, fake-hit rate runs, readout tests

On-surface commissioning

- 24/7 from July 2019 December 2020
- Verification of detector performance and stability
 - Monitor voltage, current, temperature
 - Threshold scans, fake-hit rate runs, readout tests

Inner Barrel 511 14 Threshold [DAC] 8 511 9.7 9.5 9.7 97 98 10.0 0 1023

Layer 0

-ayer 1

-ayer

Number of runs

Threshold tuning is effective Good uniformity < 1000 dead pixels in IB

34

BERKELE

On-surface commissioning

- 24/7 from July 2019 December 2020
- Verification of detector performance and stability
 - Monitor voltage, current, temperature
 - Threshold scans, fake-hit rate runs, readout tests

Fraction of masked pixels < 0.1 % for IB & OB Fake-hit rate < 10⁻¹⁰/pixel/event Very quiet detector!

ALICE ITS Configuration Database

- Creation & maintenance LBNL responsibility
- Oracle (i.e. SQL)
 - Standard for CERN databases
- Relational db
- Tools to get information in and out
 - Python, sql, c++, wincc

ITS₂ into the cavern

OB installed April 2021 IB installed May 2021

Commissioning ongoing – will be ready for data taking when LHC turns back on

In cavern commissioning

- Standalone (April June 2021)
 - Similar to on-surface commissioning
 - Detector monitoring, scans
 - Central system integration
- Global (July December 2021)
 - Validation/finalization of online data processing/monitoring
 - Detector alignment & calibration
 - Technical & physics runs

Cosmic Track from the full IB

What comes next?

ITS3: Thinner & closer to the beam pipe

ITS3 Detector Layout

during LS₃

Improve pointing resolution

• Closer to the beam pipe: 23 mm \rightarrow 18 mm

Better tracking resolution (especially at low p_T) • Less material: $0.3\% X_0 \rightarrow -0.03\% X_0$

MAPS sensors

- Wafer-scale (up to ~28 x 10 cm)
- Ultra-thin (20 40 μ m)
- Bent (R = 18, 24, 30 mm)

Improvement with ITS₃ over ITS₂

Pointing Resolution 2x better

Improved tracking efficiency for low p_T

ITS₃ Physics: Λ_{c} improvement

- Helped by improved pointing resolution
- Measurement in 0-10% centrality (0-20% with ITS2)
- Crucial for refining the total charm cross section measurement

How? → Reduce Material Budget

Observations:

- Silicon makes up ~15% of total material
- Irregularities due to support, cooling, & overlap

How?→Reduce Material Budget

Observations:

- Silicon makes up ~15% of total material
- Irregularities due to support, cooling, & overlap
- Remove water cooling
 - If power consumption < 20 mW/cm²

BERKELEY

.....

How?→Reduce Material Budget

Observations:

- Silicon makes up ~15% of total material
- Irregularities due to support, cooling, & overlap
- Remove water cooling
 - If power consumption < 20 mW/cm²
- Remove circuit board for power & data
 - If integrated on chip

BERKELE

.....

How?→Reduce Material Budget

ALICE

- Observations:
 - Silicon makes up ~15% of total material
 - Irregularities due to support, cooling, & overlap
- Remove water cooling
 - If power consumption < 20 mW/cm²
- Remove circuit board for power & data
 - If integrated on chip
- Remove mechanical support
 - Self-supporting arched structure from rolling Si wafers

Thinning & Bending Silicon

- Below 50 μm, Si wafers become flexible, "paper-like"
- Bending Si wafers + circuits is possible & has been tried
 - Radii much smaller than needed have been achieved
- Use 65 nm process for thinner metal stack
- Smaller pixels would allow for thinner epi-layer

47

Silicon Genesis: 20 micron thick wafer

Testing Bent Silicon

Testing bent silicon with ALPIDE

- Bent along short side
 - Affects pixel matrix only
 - Bonding area is glued
 - Flat & secured

Bent ALPIDE in beam test

- Curvature effect not noticeable on:
 - Pixel thresholds, FHR, pixel responsiveness
- Difference between pixel threshold negligible before and after bending
- Below threshold of 100 e⁻ (~operating point) inefficiency < 10⁻⁴

Wafer-scale Chip

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - ~ few cm²
 - Modules → chips tiled & connected to flexible printed circuit board

Wafer-scale Chip

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - ~ few cm²
 - Modules → chips tiled & connected to flexible printed circuit board
- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
 - Actively used in industry
 - Requires dedicated chip design
- Switch to 65 nm CMOS process
 - 200 mm wafer (ALPIDE, 180 nm CMOS)
 → 300 mm wafer

Wafer-scale sensor

ITS₃ Layout & Mechanics

- Smaller beam pipe diameter & wall thickness (0.14% X_o)
- Sensor thickness $20 40 \mu m$ (0.02 0.04% X_o)
- Total material (up to r ~ 4 cm) reduced by factor of 3
- Material distributed homogeneously
- Low-density carbon foam used to hold sensors in place
- Cooling at extremities
- Meant as plug-in replacement of ITS2 inner barrel

Summary

- The MAPS based ITS2 will dramatically improve ALICE tracking capabilities, especially at low p_T
- ITS2 installed in April & May 2021
 - ALICE global commissioning ongoing
- ITS₃ planned for Run 4 operation
 - Further improve tracking & pointing resolution
- ITS₃ will feature a minimal material budget & smaller radius of innermost layer
 - Thinner silicon (20 40 μm) & curved

Summary

- The MAPS based ITS2 will dramatically improve ALICE tracking capabilities, especially at low p_T
- ITS2 installed in Thank you!
 - ALICE global cc
- ITS3 planned for
 - Further improve tracking & pointing resolution
- ITS3 will feature a minimal material budget & smaller radius of innermost layer
 - Thinner silicon (20 40 μm) & curved

Backups

Table 8.6: Summary of the physics reach: minimum accessible $p_{\rm T}$ and relative statistical uncertainty in Pb–Pb collisions for an integrated luminosity of $10 \,{\rm nb}^{-1}$. For heavy flavour, the statistical uncertainties are given at the maximum between $p_{\rm T} = 2 \,{\rm GeV}/c$ and $p_{\rm T}^{\rm min}$. For elliptic flow measurements, the value of v_2 used to calculate the relative statistical uncertainty σ_{v_2}/v_2 is given in parenthesis. The case of the programme up to Long Shutdown 2, with a luminosity of $0.1 \,{\rm nb}^{-1}$ collected with minimum-bias trigger, is shown for comparison.

	Curren	$nt, 0.1 nb^{-1}$	Upgrade, $10 \mathrm{nb}^{-1}$						
Observable	$p_{\mathrm{T}}^{\mathrm{min}}$ (GeV/c)	statistical uncertainty	$p_{ m T}^{ m min} \ ({ m GeV}/c)$	statistical uncertainty					
Heavy Flavour									
D meson R_{AA}	1	10%	0	0.3 %					
$D_s meson R_{AA}$	4	15 %	< 2	3%					
D meson from B R_{AA}	3	30 %	2	1 %					
J/ψ from B R_{AA}	1.5	15% (pT-int.)	1	5%					
B ⁺ yield	not a	accessible	2	10%					
$\Lambda_{c} R_{AA}$	not a	accessible	2	15%					
$\Lambda_{\rm c}/{\rm D}^0$ ratio	not a	accessible	2	15%					
$\Lambda_{\rm b}$ yield	not a	accessible	7	20%					
D meson $v_2 (v_2 = 0.2)$	1	10 %	0	0.2%					
$D_{\rm s} {\rm meson} v_2 (v_2 = 0.2)$	not a	accessible	< 2	8%					
D from B v_2 ($v_2 = 0.05$)	not a	accessible	2	8%					
J/ψ from B v_2 ($v_2 = 0.05$)	not a	accessible	1	60%					
$\Lambda_{\rm c} \ v_2 \ (v_2 = 0.15)$	not a	accessible	3	20%					
	Dielectro	ons							
Temperature (intermediate mass)	not a	accessible		10 %					
Elliptic flow $(v_2 = 0.1)$ [4]	not a	accessible		10%					
Low-mass spectral function [4]	not a	accessible	0.3	20%					
	Hypernuclei								
$^{3}_{\Lambda}$ H yield	2	18%	2	1.7%					

6		Particle flu	Radiation doses				
Layer	Radius (mm)	Prim. & sec. particles ^{<i>a</i>} (cm ^{-2})	$\begin{array}{c} {\rm QED \ electrons}^b \\ ({\rm cm}^{-2}) \end{array}$	$\frac{\rm NIEL^c}{(1{\rm MeV}n_{eq}/{\rm cm}^2)}$	TID ^c (krad)		
0	23	30.4	6.02	$9.2 imes 10^{12}$	646		
1	32	20.4	3.49	$6.0 imes 10^{12}$	380		
2	39	14.9	2.35	$3.8 imes 10^{12}$	216		
3	196	1.0	2.1×10^{-2}	$5.4 imes 10^{11}$	15		
4	245	0.7	9.0×10^{-3}	$5.0 imes 10^{11}$	10		
5	344	0.3	1.3×10^{-3}	4.8×10^{11}	8		
6	393	0.3	4.0×10^{-4}	$4.6 imes 10^{11}$	6		

Table 1.2: Expected maximum hit densities and radiation levels (see text for details).

^a maximum hit densities in central Pb-Pb collisions (including secondaries produced in material)

^b for an integration time of 10 µs, an interaction rate of 50 kHz, a magnetic field of 0.2 T and

 $p_{\rm T} > 0.3 \,{\rm MeV}/c$; a magnetic field of 0.2 T, which is planned for a run dedicated to the measurement of low-mass di-electrons, corresponds to the worst case scenario in terms of detector occupancy

^c including a safety factor of ten

Table 2: Expected maximum particle density in the layers of the ITS Inner Barrel.

		Particle density (cm^{-2})								
	LS2	2 Upgrade	LS3 Upgrade							
Layer	Hadronic ^a	QED electrons ^b	Hadronic ^a	QED electrons ^b						
0	43	7	73	12						
1	25	3	43	8						
2	17	2	29	6						

^a maximum particle density in central Pb-Pb collisions (including secondaries produced in material) for a magnetic field of 0.2 T.

^b for an integration time of 10 µs, an interaction rate of 50 kHz, a magnetic field of 0.2 T

Occupancy ~10⁻³

ALICE PIxel DEtector (ALPIDE)

Artistic view of a SEM picture of ALPIDE cross section

Q_{in} (MIP) ≈ 1300 e ⇔ V ≈ 40mV

pixel capacitance $\approx 5 fF (@V_{bb} = -3 V)$

Epitaxial Layer P-

Substrate P++

- High-resistivity (> 1kΩ cm) p-type epitaxial layer (25μm) on p-type substrate
- ▶ Small n-well diode (2 µm diameter), ~100 times smaller than pixel => low capacitance (~fF)

 $N_{A} \sim 10^{18}$

- Reverse bias voltage (-6V < V_{BB} < 0V) to substrate (contact from the top) to increase depletion zone around NWELL collection diode</p>
- Deep PWELL shields NWELL of PMOS transistors L. Musa (CERN) – 11th FCC-ee Workshop, 9 November 2018

➔ full CMOS circuitry within active area

 $C_{in} \approx 5 \text{ fF}$

7

Figure 6: Diagram of stitched sensor in one direction (horizontal and vertical dimensions not to scale). Stitching in the vertical direction is also possible.

The data bus is conservatively estimated to take an area of up to $50 \mu m \times 280 mm$ (a factor 2.8 larger for the 180 nm process), which amounts to a dead area that corresponds to about 0.3 % of the detector acceptance. As a comparison, the ITS2 has gaps in the *z*-direction between adjacent chips (matrix to matrix) of 150 µm, which result in a total dead area of 0.5 %. The simulations presented in the document take into account a dead area of 5 %.

ITS Upgrade in LS3 (ITS3)

Eol for a nearly 0-mass Inner Barrel in LS3 (http://cds.cern.ch/record/2644611/)

Driving requirements of ITS Upgrade in LS2

- Improved tracking precision (smaller pixels, closer to IP, less material)
- Faster readout

Truly cylindrical

vertex detector

Beampipe IR 16 mm

ΔR 0.5mm

Can be pushed further using technologies that are becoming mature

- Eliminate active cooling
 ⇒ possible for power < 20mW/cm²
- Eliminate electrical substrate ➡ Possible if the sensor covers the full stave length

Pipe: $r \approx 16mm$, $\Delta R = 0.5mm$

• Sensors arranged with a perfectly cylindrical shape ⇒ sensors thinned to ~30µm can be cruved to a radii 10-20mm

0.05% x/X_o per layer

~14cm

BEAMPIPE

END-WHEEL (C-side)

END-WHEEL (Aside)

Cooling

ALPIDE - the MAPS for the ITS2

- Air cooling possible from ~20 mW/cm²
- ALPIDE already close: ~40 mW/cm²
- actually largely sufficient if periphery outside fiducial volume

ML Residuals

ML Planarity

- 2 measurements per sensor
- Tolerance of 1 mm for planarity
- Flatness from reference system x-y plane

ML Noisy Pixels

- Tune threshold to ~100 e⁻
- Pixels readout for 10⁵ triggers
- Mask noisy pixels (at least 2 "hits" during previous test)
- Re-run test (Done for o V and -3 V)
- Noise rate well below the 10⁻⁵ design goal

Noisy Pixels per Module per Trigger after Masking at -3V