Next Steps For Calibrations + Reconstruction

Michael Kagan, Maxime Vandegar SLAC

September 9, 2021

Moving Forward

- Best reconstruction requires precision calibration
- Calibration Options (in expected order of difficult)
 - 1. Known object (i.e. have model) at known position \rightarrow Fit Normals
 - 2. Known object at unknown positions
 - Fit normal and object positions \rightarrow use multiple measurements
 - 3. Unknown object
 - Fit normals and 3D object model → likely need multiple measurements + reconstruction algorithm
 - One idea here is to put LED in focus and make assumptions about position
- Can we skip precision calibration? Will it hurt reconstruction?
 - Could assume object at center of FoV and fit normals
 - Test by running reconstruction after fitting approx. normals
 - Must understand how variations in object position translate into errors in normal position estimates

Towards a paper

- Precision calibration takes time (so is getting reconstruction working)
- What do we want for a paper?
 - Best reconstruction we can do now \rightarrow requires calibration (i.e. time)
 - Just want some sort of reconstruction \rightarrow Skip precision calibration
 - Will people be interested if we don't show best possible resolution?
 - OK if only need to see reconstructed 3D object, not necessarily most precise
 - Not necessarily useful for quantitative metrics
 - This needs to be tested, not clear it will be good enough
 - Can try study with simulation studies
 - More generally, reconstruction with system is complex enough that we likely want to release accompanied software for computational imaging

backup

Status

- Mirror prototype is nearly ready to be made... time for Reco
- Before we can Reconstruct... we must Calibrate.
 - If we don't know where the mirrors are, we can not reconstruct
- Calibration by differentiating the simulator...what we know
 - Need to know what the object is. Point Source is great
 - IF we know where the object is \rightarrow Optimizing normals works quite well
 - IF we don't know the object position:
 - Optimizing normals does converge, but results can be very wrong
 - We can optimize for object position and normal
 - Benefits from several measurements
 - MUCH slower than normal only optimization
 - IF we don't know the object:
 - We can try to fit it (i.e. with NN) at same time as normal
 - Not yet tried, likely much harder than previous options

Next Steps

- Calibrate with LED... but with precisely measured object position
 - Murtaza idea: Get LED in-focus, assume ideal position
 - Not all mirrors may be in focus at once
 - fit in focus mirrors
 - move objector or dome (with precision movements)
 - Fit new in-focus mirror normal
 - LED Model? Once in focus, fit normal to LED bright spot center
- Another Idea: fit a know printed object, like a box with contrast-lines
 - Just box \rightarrow can add this model to code and fit
 - With lines \rightarrow May be able to calibrate from contrast-line defocus
- Reconstruction
 - Once we know normal, should try Filtered backprojection
 - Continue work towards neural net fit.